These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35536795)

  • 1. Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton.
    Cao W; Ma Y; Chen C; Zhang J; Wu X
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):384-394. PubMed ID: 35536795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation.
    Zhang X; Chen X; Huo B; Liu C; Zhu X; Zu Y; Wang X; Chen X; Sun Q
    Sci Rep; 2023 Mar; 13(1):4251. PubMed ID: 36918651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A soft exosuit for hip extension assistance of the elderly.
    Fang T; Cao W; Chen C; Zhang Y; Wang Z; Wu X
    Technol Health Care; 2021; 29(4):837-841. PubMed ID: 33427699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the influence of wearable lower limb exoskeleton on gait characteristics].
    Zhang J; Cai Y; Liu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):785-794. PubMed ID: 31631627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Lower-Limb Exoskeleton for Children With Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation.
    Sarajchi M; Al-Hares MK; Sirlantzis K
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2695-2720. PubMed ID: 34910636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The exoskeleton expansion: improving walking and running economy.
    Sawicki GS; Beck ON; Kang I; Young AJ
    J Neuroeng Rehabil; 2020 Feb; 17(1):25. PubMed ID: 32075669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Human Lower Limb Mechanical Phantom for the Testing of Knee Exoskeletons.
    Barrutia WS; Bratt J; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2497-2506. PubMed ID: 37186529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series.
    Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing safe fall strategies for lower limb exoskeletons.
    Khalili M; Borisoff JF; Van der Loos HFM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():314-319. PubMed ID: 28813838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible lower limb exoskeleton systems: A review.
    Meng Q; Zeng Q; Xie Q; Fei C; Kong B; Lu X; Wang H; Yu H
    NeuroRehabilitation; 2022; 50(4):367-390. PubMed ID: 35147568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
    Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and analysis of a passive exoskeleton with its hip joint energy-storage.
    Hu S; Chen W; Xiong X; Sun X; He C
    Proc Inst Mech Eng H; 2023 Sep; 237(9):1039-1051. PubMed ID: 37571990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.