These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35536812)
1. SCAMPER: Accurate Type-Specific Prediction of Calcium-Binding Residues Using Sequence-Derived Features. Zhang J; Zhou F; Liang X; Yang G IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1406-1416. PubMed ID: 35536812 [TBL] [Abstract][Full Text] [Related]
2. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Zhang J; Kurgan L Bioinformatics; 2019 Jul; 35(14):i343-i353. PubMed ID: 31510679 [TBL] [Abstract][Full Text] [Related]
3. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences. Zhang J; Ghadermarzi S; Katuwawala A; Kurgan L Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415020 [TBL] [Abstract][Full Text] [Related]
4. TYLER, a fast method that accurately predicts cyclin-dependent proteins by using computation-based motifs and sequence-derived features. Zhang J; Liang X; Zhou F; Li B; Li Y Math Biosci Eng; 2021 Jul; 18(5):6410-6429. PubMed ID: 34517538 [TBL] [Abstract][Full Text] [Related]
5. High-Throughput Identification of Mammalian Secreted Proteins Using Species-Specific Scheme and Application to Human Proteome. Zhang J; Chai H; Guo S; Guo H; Li Y Molecules; 2018 Jun; 23(6):. PubMed ID: 29903999 [TBL] [Abstract][Full Text] [Related]
6. Review and comparative assessment of sequence-based predictors of protein-binding residues. Zhang J; Kurgan L Brief Bioinform; 2018 Sep; 19(5):821-837. PubMed ID: 28334258 [TBL] [Abstract][Full Text] [Related]
7. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning. Zhang F; Zhao B; Shi W; Li M; Kurgan L Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768 [TBL] [Abstract][Full Text] [Related]
8. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins. Zhang J; Ghadermarzi S; Kurgan L Bioinformatics; 2020 Sep; 36(18):4729-4738. PubMed ID: 32860044 [TBL] [Abstract][Full Text] [Related]
9. qNABpredict: Quick, accurate, and taxonomy-aware sequence-based prediction of content of nucleic acid binding amino acids. Wu Z; Basu S; Wu X; Kurgan L Protein Sci; 2023 Jan; 32(1):e4544. PubMed ID: 36519304 [TBL] [Abstract][Full Text] [Related]
10. Expression and functional characterization of SCaMPER: a sphingolipid-modulated calcium channel of cardiomyocytes. Cavalli AL; O'Brien NW; Barlow SB; Betto R; Glembotski CC; Palade PT; Sabbadini RA Am J Physiol Cell Physiol; 2003 Mar; 284(3):C780-90. PubMed ID: 12421694 [TBL] [Abstract][Full Text] [Related]
11. HEMEsPred: Structure-Based Ligand-Specific Heme Binding Residues Prediction by Using Fast-Adaptive Ensemble Learning Scheme. Zhang J; Chai H; Gao B; Yang G; Ma Z IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):147-156. PubMed ID: 28029626 [TBL] [Abstract][Full Text] [Related]
12. Predicting zinc binding at the proteome level. Passerini A; Andreini C; Menchetti S; Rosato A; Frasconi P BMC Bioinformatics; 2007 Feb; 8():39. PubMed ID: 17280606 [TBL] [Abstract][Full Text] [Related]
13. DeepPRObind: Modular Deep Learner that Accurately Predicts Structure and Disorder-Annotated Protein Binding Residues. Zhang F; Li M; Zhang J; Shi W; Kurgan L J Mol Biol; 2023 Jul; 435(14):167945. PubMed ID: 36621533 [TBL] [Abstract][Full Text] [Related]
14. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction. Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785 [TBL] [Abstract][Full Text] [Related]
15. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome. Chowdhury S; Zhang J; Kurgan L Proteomics; 2018 Nov; 18(21-22):e1800064. PubMed ID: 29806170 [TBL] [Abstract][Full Text] [Related]
16. HybridRNAbind: prediction of RNA interacting residues across structure-annotated and disorder-annotated proteins. Zhang F; Li M; Zhang J; Kurgan L Nucleic Acids Res; 2023 Mar; 51(5):e25. PubMed ID: 36629262 [TBL] [Abstract][Full Text] [Related]
17. DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues. Yan J; Kurgan L Nucleic Acids Res; 2017 Jun; 45(10):e84. PubMed ID: 28132027 [TBL] [Abstract][Full Text] [Related]
18. Improving the prediction of protein-nucleic acids binding residues via multiple sequence profiles and the consensus of complementary methods. Su H; Liu M; Sun S; Peng Z; Yang J Bioinformatics; 2019 Mar; 35(6):930-936. PubMed ID: 30169574 [TBL] [Abstract][Full Text] [Related]
19. DisoLipPred: accurate prediction of disordered lipid-binding residues in protein sequences with deep recurrent networks and transfer learning. Katuwawala A; Zhao B; Kurgan L Bioinformatics; 2021 Dec; 38(1):115-124. PubMed ID: 34487138 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains. Zhang J; Ma Z; Kurgan L Brief Bioinform; 2019 Jul; 20(4):1250-1268. PubMed ID: 29253082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]