These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35536812)
21. NCBRPred: predicting nucleic acid binding residues in proteins based on multilabel learning. Zhang J; Chen Q; Liu B Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454744 [TBL] [Abstract][Full Text] [Related]
22. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
23. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences. Meng F; Kurgan L Bioinformatics; 2016 Jun; 32(12):i341-i350. PubMed ID: 27307636 [TBL] [Abstract][Full Text] [Related]
24. PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection. Zhang F; Shi W; Zhang J; Zeng M; Li M; Kurgan L Bioinformatics; 2020 Dec; 36(Suppl_2):i735-i744. PubMed ID: 33381815 [TBL] [Abstract][Full Text] [Related]
25. Translational control of Scamper expression via a cell-specific internal ribosome entry site. De Pietri Tonelli D; Mihailovich M; Schnurbus R; Pesole G; Grohovaz F; Zacchetti D Nucleic Acids Res; 2003 May; 31(10):2508-13. PubMed ID: 12736299 [TBL] [Abstract][Full Text] [Related]
26. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. Wang K; Hu G; Wu Z; Su H; Yang J; Kurgan L Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32961749 [TBL] [Abstract][Full Text] [Related]
27. TSNAPred: predicting type-specific nucleic acid binding residues via an ensemble approach. Nie W; Deng L Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753699 [TBL] [Abstract][Full Text] [Related]
28. Binding site prediction for protein-protein interactions and novel motif discovery using re-occurring polypeptide sequences. Amos-Binks A; Patulea C; Pitre S; Schoenrock A; Gui Y; Green JR; Golshani A; Dehne F BMC Bioinformatics; 2011 Jun; 12():225. PubMed ID: 21635751 [TBL] [Abstract][Full Text] [Related]
29. Proteome scanning to predict PDZ domain interactions using support vector machines. Hui S; Bader GD BMC Bioinformatics; 2010 Oct; 11():507. PubMed ID: 20939902 [TBL] [Abstract][Full Text] [Related]
30. High-throughput prediction of disordered moonlighting regions in protein sequences. Meng F; Kurgan L Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775 [TBL] [Abstract][Full Text] [Related]
31. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information. Qiao L; Xie D Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728 [TBL] [Abstract][Full Text] [Related]
32. Re-evaluation of primary structure, topology, and localization of Scamper, a putative intracellular Ca2+ channel activated by sphingosylphosphocholine. Schnurbus R; de Pietri Tonelli D; Grohovaz F; Zacchetti D Biochem J; 2002 Feb; 362(Pt 1):183-9. PubMed ID: 11829755 [TBL] [Abstract][Full Text] [Related]
33. Accurate Sequence-Based Prediction of Deleterious nsSNPs with Multiple Sequence Profiles and Putative Binding Residues. Song R; Cao B; Peng Z; Oldfield CJ; Kurgan L; Wong KC; Yang J Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572550 [TBL] [Abstract][Full Text] [Related]
34. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782 [TBL] [Abstract][Full Text] [Related]
35. Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-Based Cube-Format Feature. Hu J; Bai YS; Zheng LL; Jia NX; Yu DJ; Zhang GJ IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3635-3645. PubMed ID: 34714748 [TBL] [Abstract][Full Text] [Related]
36. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues. Yan J; Friedrich S; Kurgan L Brief Bioinform; 2016 Jan; 17(1):88-105. PubMed ID: 25935161 [TBL] [Abstract][Full Text] [Related]
37. Identification of Ca(2+)-binding residues of a protein from its primary sequence. Jiang Z; Hu XZ; Geriletu G; Xing HR; Cao XY Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323050 [TBL] [Abstract][Full Text] [Related]
38. Mycobacterium tuberculosis and Clostridium difficille interactomes: demonstration of rapid development of computational system for bacterial interactome prediction. Ananthasubramanian S; Metri R; Khetan A; Gupta A; Handen A; Chandra N; Ganapathiraju M Microb Inform Exp; 2012 Mar; 2():4. PubMed ID: 22587966 [TBL] [Abstract][Full Text] [Related]
39. Proteome-wide prediction of overlapping small molecule and protein binding sites using structure. Davis FP Mol Biosyst; 2011 Feb; 7(2):545-57. PubMed ID: 21103609 [TBL] [Abstract][Full Text] [Related]