These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35536843)

  • 1. Integrating unsupervised and reinforcement learning in human categorical perception: A computational model.
    Granato G; Cartoni E; Da Rold F; Mattera A; Baldassarre G
    PLoS One; 2022; 17(5):e0267838. PubMed ID: 35536843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
    Khamassi M; Enel P; Dominey PF; Procyk E
    Prog Brain Res; 2013; 202():441-64. PubMed ID: 23317844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis.
    Collins AG; Frank MJ
    Eur J Neurosci; 2012 Apr; 35(7):1024-35. PubMed ID: 22487033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interpretation of computational model parameters depends on the context.
    Eckstein MK; Master SL; Xia L; Dahl RE; Wilbrecht L; Collins AGE
    Elife; 2022 Nov; 11():. PubMed ID: 36331872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric and adaptive reward coding via normalized reinforcement learning.
    Louie K
    PLoS Comput Biol; 2022 Jul; 18(7):e1010350. PubMed ID: 35862443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Basal Ganglia Reinforcement Learning in Lexical Ambiguity Resolution.
    Ceballos JM; Stocco A; Prat CS
    Top Cogn Sci; 2020 Jan; 12(1):402-416. PubMed ID: 32023006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Bellman-error with logistic distribution with applications in reinforcement learning.
    Lv O; Zhou B; Yang LF
    Neural Netw; 2024 Sep; 177():106387. PubMed ID: 38788292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-Based Reinforcement Learning with Automated Planning for Network Management.
    Ordonez A; Caicedo OM; Villota W; Rodriguez-Vivas A; da Fonseca NLS
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.
    Zsuga J; Biro K; Papp C; Tajti G; Gesztelyi R
    Behav Neurosci; 2016 Feb; 130(1):6-18. PubMed ID: 26795580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approach-avoidance reinforcement learning as a translational and computational model of anxiety-related avoidance.
    Yamamori Y; Robinson OJ; Roiser JP
    Elife; 2023 Nov; 12():. PubMed ID: 37963085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning can account for associative and perceptual learning on a visual-decision task.
    Law CT; Gold JI
    Nat Neurosci; 2009 May; 12(5):655-63. PubMed ID: 19377473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning on slow features of high-dimensional input streams.
    Legenstein R; Wilbert N; Wiskott L
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20808883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Reinforcement Learning in a Virtual Robotic Surgical Simulation.
    Bourdillon AT; Garg A; Wang H; Woo YJ; Pavone M; Boyd J
    Surg Innov; 2023 Feb; 30(1):94-102. PubMed ID: 35503302
    [No Abstract]   [Full Text] [Related]  

  • 20. Momentary subjective well-being depends on learning and not reward.
    Blain B; Rutledge RB
    Elife; 2020 Nov; 9():. PubMed ID: 33200989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.