BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35536859)

  • 1. Hypoxia-Reoxygenation Couples 3βHSD1 Enzyme and Cofactor Upregulation to Facilitate Androgen Biosynthesis and Hormone Therapy Resistance in Prostate Cancer.
    Qin L; Chung YM; Berk M; Naelitz B; Zhu Z; Klein E; Chakraborty AA; Sharifi N
    Cancer Res; 2022 Jul; 82(13):2417-2430. PubMed ID: 35536859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic hypoxia stabilizes 3βHSD1 via autophagy suppression.
    Qin L; Berk M; Chung YM; Cui D; Zhu Z; Chakraborty AA; Sharifi N
    Cell Rep; 2024 Jan; 43(1):113575. PubMed ID: 38181788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AR Signaling in Prostate Cancer Regulates a Feed-Forward Mechanism of Androgen Synthesis by Way of HSD3B1 Upregulation.
    Hettel D; Zhang A; Alyamani M; Berk M; Sharifi N
    Endocrinology; 2018 Aug; 159(8):2884-2890. PubMed ID: 29850791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BMX controls 3βHSD1 and sex steroid biosynthesis in cancer.
    Li X; Berk M; Goins C; Alyamani M; Chung YM; Wang C; Patel M; Rathi N; Zhu Z; Willard B; Stauffer S; Klein E; Sharifi N
    J Clin Invest; 2023 Jan; 133(2):. PubMed ID: 36647826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer-associated fibroblast-secreted glucosamine alters the androgen biosynthesis program in prostate cancer via HSD3B1 upregulation.
    Cui D; Li J; Zhu Z; Berk M; Hardaway A; McManus J; Chung YM; Alyamani M; Valle S; Tiwari R; Han B; Goudarzi M; Willard B; Sharifi N
    J Clin Invest; 2023 Apr; 133(7):. PubMed ID: 37009898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intratumoral androgen biosynthesis associated with 3β-hydroxysteroid dehydrogenase 1 promotes resistance to radiotherapy in prostate cancer.
    Ganguly S; Lone Z; Muskara A; Imamura J; Hardaway A; Patel M; Berk M; Smile TD; Davicioni E; Stephans KL; Ciezki J; Weight CJ; Gupta S; Reddy CA; Tendulkar RD; Chakraborty AA; Klein EA; Sharifi N; Mian OY
    J Clin Invest; 2023 Nov; 133(22):. PubMed ID: 37966114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independence of HIF1a and androgen signaling pathways in prostate cancer.
    Tran MGB; Bibby BAS; Yang L; Lo F; Warren AY; Shukla D; Osborne M; Hadfield J; Carroll T; Stark R; Scott H; Ramos-Montoya A; Massie C; Maxwell P; West CML; Mills IG; Neal DE
    BMC Cancer; 2020 May; 20(1):469. PubMed ID: 32450824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the androgen receptor signaling pathway in advanced prostate cancer.
    Chung C; Abboud K
    Am J Health Syst Pharm; 2022 Jul; 79(15):1224-1235. PubMed ID: 35390118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of the cellular secretory milieu overrides androgen dependence of in vivo generated castration resistant prostate cancer cells overexpressing the androgen receptor.
    Patki M; Huang Y; Ratnam M
    Biochem Biophys Res Commun; 2016 Jul; 476(2):69-74. PubMed ID: 27179779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuating Adaptive VEGF-A and IL8 Signaling Restores Durable Tumor Control in AR Antagonist-Treated Prostate Cancers.
    Maxwell PJ; McKechnie M; Armstrong CW; Manley JM; Ong CW; Worthington J; Mills IG; Longley DB; Quigley JP; Zoubeidi A; de Bono JS; Deryugina E; LaBonte MJ; Waugh DJJ
    Mol Cancer Res; 2022 Jun; 20(6):841-853. PubMed ID: 35302608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of adrenal derived androgens in castration resistant prostate cancer.
    Barnard M; Mostaghel EA; Auchus RJ; Storbeck KH
    J Steroid Biochem Mol Biol; 2020 Mar; 197():105506. PubMed ID: 31672619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steroidogenesis in castration-resistant prostate cancer.
    Shiota M; Endo S; Blas L; Fujimoto N; Eto M
    Urol Oncol; 2023 May; 41(5):240-251. PubMed ID: 36376200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion.
    Kaipainen A; Zhang A; Gil da Costa RM; Lucas J; Marck B; Matsumoto AM; Morrissey C; True LD; Mostaghel EA; Nelson PS
    Prostate; 2019 Sep; 79(13):1530-1542. PubMed ID: 31376206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testosterone boosts for treatment of castration resistant prostate cancer: an experimental implementation of intermittent androgen deprivation.
    Thelen P; Heinrich E; Bremmer F; Trojan L; Strauss A
    Prostate; 2013 Nov; 73(15):1699-709. PubMed ID: 23868789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phosphorylation switch controls androgen biosynthesis in prostate cancer.
    Qiu Y
    J Clin Invest; 2023 Jan; 133(2):. PubMed ID: 36647834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal Therapy for Prostate Cancer.
    Desai K; McManus JM; Sharifi N
    Endocr Rev; 2021 May; 42(3):354-373. PubMed ID: 33480983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NDRG2 acts as a negative regulator downstream of androgen receptor and inhibits the growth of androgen-dependent and castration-resistant prostate cancer.
    Yu C; Wu G; Li R; Gao L; Yang F; Zhao Y; Zhang J; Zhang R; Zhang J; Yao L; Yuan J; Li X
    Cancer Biol Ther; 2015; 16(2):287-96. PubMed ID: 25756511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance.
    Li S; Hu MG; Sun Y; Yoshioka N; Ibaragi S; Sheng J; Sun G; Kishimoto K; Hu GF
    Mol Cancer Res; 2013 Oct; 11(10):1203-14. PubMed ID: 23851444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways.
    Vis AN; Schröder FH
    BJU Int; 2009 Aug; 104(4):438-48. PubMed ID: 19558559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-LAK cell-originated protein kinase (TOPK) enhances androgen receptor splice variant (ARv7) and drives androgen-independent growth in prostate cancer.
    Alhawas L; Amin KS; Salla B; Banerjee PP
    Carcinogenesis; 2021 Apr; 42(3):423-435. PubMed ID: 33185682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.