BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35536872)

  • 1. Bimodal Gene Expression in Patients with Cancer Provides Interpretable Biomarkers for Drug Sensitivity.
    Ba-Alawi W; Nair SK; Li B; Mammoliti A; Smirnov P; Mer AS; Penn LZ; Haibe-Kains B
    Cancer Res; 2022 Jul; 82(13):2378-2387. PubMed ID: 35536872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison and validation of genomic predictors for anticancer drug sensitivity.
    Papillon-Cavanagh S; De Jay N; Hachem N; Olsen C; Bontempi G; Aerts HJ; Quackenbush J; Haibe-Kains B
    J Am Med Inform Assoc; 2013; 20(4):597-602. PubMed ID: 23355484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene isoforms as expression-based biomarkers predictive of drug response in vitro.
    Safikhani Z; Smirnov P; Thu KL; Silvester J; El-Hachem N; Quevedo R; Lupien M; Mak TW; Cescon D; Haibe-Kains B
    Nat Commun; 2017 Oct; 8(1):1126. PubMed ID: 29066719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data.
    Jang IS; Neto EC; Guinney J; Friend SH; Margolin AA
    Pac Symp Biocomput; 2014; ():63-74. PubMed ID: 24297534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning.
    Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y
    Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacogenomic biomarkers for personalized cancer treatment.
    Rodríguez-Antona C; Taron M
    J Intern Med; 2015 Feb; 277(2):201-217. PubMed ID: 25338550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal gene expression and biomarker discovery.
    Ertel A
    Cancer Inform; 2010 Feb; 9():11-4. PubMed ID: 20234772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative Pharmacogenomics Analysis of Patient-Derived Xenografts.
    Mer AS; Ba-Alawi W; Smirnov P; Wang YX; Brew B; Ortmann J; Tsao MS; Cescon DW; Goldenberg A; Haibe-Kains B
    Cancer Res; 2019 Sep; 79(17):4539-4550. PubMed ID: 31142512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling.
    Piyawajanusorn C; Nguyen LC; Ghislat G; Ballester PJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepwise group sparse regression (SGSR): gene-set-based pharmacogenomic predictive models with stepwise selection of functional priors.
    Jang IS; Dienstmann R; Margolin AA; Guinney J
    Pac Symp Biocomput; 2015; 20():32-43. PubMed ID: 25592566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the clinical actionability of germline pharmacogenomic findings in oncology.
    Wellmann R; Borden BA; Danahey K; Nanda R; Polite BN; Stadler WM; Ratain MJ; O'Donnell PH
    Cancer; 2018 Jul; 124(14):3052-3065. PubMed ID: 29742281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells.
    Kuenzi BM; Park J; Fong SH; Sanchez KS; Lee J; Kreisberg JF; Ma J; Ideker T
    Cancer Cell; 2020 Nov; 38(5):672-684.e6. PubMed ID: 33096023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Line Selectivity Improves the Predictive Power of Pharmacogenomic Analyses and Helps Identify NADPH as Biomarker for Ferroptosis Sensitivity.
    Shimada K; Hayano M; Pagano NC; Stockwell BR
    Cell Chem Biol; 2016 Feb; 23(2):225-235. PubMed ID: 26853626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Interactions and Tissue Specificity Modulate the Association of Mutations with Drug Response.
    Cramer D; Mazur J; Espinosa O; Schlesner M; Hübschmann D; Eils R; Staub E
    Mol Cancer Ther; 2020 Mar; 19(3):927-936. PubMed ID: 31826931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MERIDA: a novel Boolean logic-based integer linear program for personalized cancer therapy.
    Lenhof K; Gerstner N; Kehl T; Eckhart L; Schneider L; Lenhof HP
    Bioinformatics; 2021 Nov; 37(21):3881-3888. PubMed ID: 34352075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine.
    Feng F; Shen B; Mou X; Li Y; Li H
    J Genet Genomics; 2021 Jul; 48(7):540-551. PubMed ID: 34023295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.