These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35537044)

  • 1. What Drives Radical Halogenation versus Hydroxylation in Mononuclear Nonheme Iron Complexes? A Combined Experimental and Computational Study.
    Gérard EF; Yadav V; Goldberg DP; de Visser SP
    J Am Chem Soc; 2022 Jun; 144(24):10752-10767. PubMed ID: 35537044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonheme Iron(III) Azide and Iron(III) Isothiocyanate Complexes: Radical Rebound Reactivity, Selectivity, and Catalysis.
    Yadav V; Wen L; Rodriguez RJ; Siegler MA; Goldberg DP
    J Am Chem Soc; 2022 Nov; 144(45):20641-20652. PubMed ID: 36382466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the Inherent Selectivity for Carbon Radical Hydroxylation versus Halogenation with Fe
    Yadav V; Rodriguez RJ; Siegler MA; Goldberg DP
    J Am Chem Soc; 2020 Apr; 142(16):7259-7264. PubMed ID: 32281794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselectivity of substrate hydroxylation versus halogenation by a nonheme iron(IV)-oxo complex: possibility of rearrangement pathways.
    Quesne MG; de Visser SP
    J Biol Inorg Chem; 2012 Aug; 17(6):841-52. PubMed ID: 22580819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Nonheme Iron Halogenases Do Not Fluorinate C-H Bonds: A Computational Investigation.
    Vennelakanti V; Li GL; Kulik HJ
    Inorg Chem; 2023 Dec; 62(48):19758-19770. PubMed ID: 37972340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aliphatic C-H Bond Halogenation by Iron(II)-α-Keto Acid Complexes and O
    Jana RD; Sheet D; Chatterjee S; Paine TK
    Inorg Chem; 2018 Aug; 57(15):8769-8777. PubMed ID: 30009593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective C-H halogenation over hydroxylation by non-heme iron(iv)-oxo.
    Rana S; Biswas JP; Sen A; Clémancey M; Blondin G; Latour JM; Rajaraman G; Maiti D
    Chem Sci; 2018 Oct; 9(40):7843-7858. PubMed ID: 30429994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Radical Transfer in a Series of Nonheme Iron(III) Complexes.
    Yadav V; Wen L; Yadav S; Siegler MA; Goldberg DP
    Inorg Chem; 2023 Oct; 62(43):17830-17842. PubMed ID: 37857315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-triggered chemoselective halogenation of aliphatic C-H bonds with nonheme Fe
    Pagès-Vilà N; Gamba I; Clémancey M; Latour JM; Company A; Costas M
    J Inorg Biochem; 2024 Jun; 259():112643. PubMed ID: 38924872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dioxygen-Derived Nonheme Mononuclear Fe
    Yadav V; Gordon JB; Siegler MA; Goldberg DP
    J Am Chem Soc; 2019 Jul; 141(26):10148-10153. PubMed ID: 31244183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2.
    Srnec M; Solomon EI
    J Am Chem Soc; 2017 Feb; 139(6):2396-2407. PubMed ID: 28095695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2.
    Matthews ML; Neumann CS; Miles LA; Grove TL; Booker SJ; Krebs C; Walsh CT; Bollinger JM
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17723-8. PubMed ID: 19815524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with Fe
    Yang M; Chen X; Su X; She YB; Yang YF
    Chem Asian J; 2023 Mar; 18(6):e202201311. PubMed ID: 36705485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates.
    Dai L; Zhang X; Hu Y; Shen J; Zhang Q; Zhang L; Min J; Chen CC; Liu Y; Huang JW; Guo RT
    Appl Environ Microbiol; 2022 May; 88(9):e0249721. PubMed ID: 35435717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Heme-Iron-Mediated Selective Halogenation of Unactivated Carbon-Hydrogen Bonds.
    Bleher K; Comba P; Faltermeier D; Gupta A; Kerscher M; Krieg S; Martin B; Velmurugan G; Yang S
    Chemistry; 2022 Jan; 28(4):e202103452. PubMed ID: 34792224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5.
    Zhang X; Wang Z; Gao J; Liu W
    Phys Chem Chem Phys; 2020 Apr; 22(16):8699-8712. PubMed ID: 32270839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron(IV)-oxo complexes with the bond-dissociation energy of the C-H bond of the substrate.
    Latifi R; Bagherzadeh M; de Visser SP
    Chemistry; 2009 Jul; 15(27):6651-62. PubMed ID: 19472231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide: a waste product in the catalytic cycle of alpha-ketoglutarate dependent halogenases prevents the formation of hydroxylated by-products.
    de Visser SP; Latifi R
    J Phys Chem B; 2009 Jan; 113(1):12-4. PubMed ID: 19061416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does Substrate Positioning Affect the Selectivity and Reactivity in the Hectochlorin Biosynthesis Halogenase?
    Timmins A; Fowler NJ; Warwicker J; Straganz GD; de Visser SP
    Front Chem; 2018; 6():513. PubMed ID: 30425979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.