BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 35537069)

  • 1. Metal Ion-Directed Functional Metal-Phenolic Materials.
    Geng H; Zhong QZ; Li J; Lin Z; Cui J; Caruso F; Hao J
    Chem Rev; 2022 Jul; 122(13):11432-11473. PubMed ID: 35537069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphenol-Mediated Assembly for Particle Engineering.
    Zhou J; Lin Z; Ju Y; Rahim MA; Richardson JJ; Caruso F
    Acc Chem Res; 2020 Jul; 53(7):1269-1278. PubMed ID: 32567830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of Bioactive Nanoparticles via Metal-Phenolic Complexation.
    Chen J; Pan S; Zhou J; Lin Z; Qu Y; Glab A; Han Y; Richardson JJ; Caruso F
    Adv Mater; 2022 Mar; 34(10):e2108624. PubMed ID: 34933398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering multifunctional capsules through the assembly of metal-phenolic networks.
    Guo J; Ping Y; Ejima H; Alt K; Meissner M; Richardson JJ; Yan Y; Peter K; von Elverfeldt D; Hagemeyer CE; Caruso F
    Angew Chem Int Ed Engl; 2014 May; 53(22):5546-51. PubMed ID: 24700671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins of Structural Elasticity in Metal-Phenolic Networks Probed by Super-Resolution Microscopy and Multiscale Simulations.
    Bhangu SK; Charchar P; Noble BB; Kim CJ; Pan S; Yarovsky I; Cavalieri F; Caruso F
    ACS Nano; 2022 Jan; 16(1):98-110. PubMed ID: 34843208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science.
    Prochowicz D; Kornowicz A; Lewiński J
    Chem Rev; 2017 Nov; 117(22):13461-13501. PubMed ID: 29048880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolic Building Blocks for the Assembly of Functional Materials.
    Rahim MA; Kristufek SL; Pan S; Richardson JJ; Caruso F
    Angew Chem Int Ed Engl; 2019 Feb; 58(7):1904-1927. PubMed ID: 30221440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine coordination chemistry for molecular assemblies on surfaces.
    de Ruiter G; Lahav M; van der Boom ME
    Acc Chem Res; 2014 Dec; 47(12):3407-16. PubMed ID: 25350402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Assembly of Metal-Phenolic Network Nanoparticles for Biomedical Applications.
    Xu W; Lin Z; Pan S; Chen J; Wang T; Cortez-Jugo C; Caruso F
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202312925. PubMed ID: 37800651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Mechanical Behavior of Metal-Phenolic Networks through Building Block Composition.
    Yun G; Richardson JJ; Biviano M; Caruso F
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6404-6410. PubMed ID: 30719910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Selective Coordination Assembly of Dynamic Metal-Phenolic Networks.
    Xu W; Pan S; Noble BB; Chen J; Lin Z; Han Y; Zhou J; Richardson JJ; Yarovsky I; Caruso F
    Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202208037. PubMed ID: 35726006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highlighting the roles of transition metals and speciation in chemical biology.
    Kostenkova K; Scalese G; Gambino D; Crans DC
    Curr Opin Chem Biol; 2022 Aug; 69():102155. PubMed ID: 35643024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metals in biomass: from the biological system of elements to reasons of fractionation and element use.
    Fränzle S; Markert B
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):404-13. PubMed ID: 17993224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the Toolbox of Metal-Phenolic Networks via Enzyme-Mediated Assembly.
    Zhong QZ; Richardson JJ; Li S; Zhang W; Ju Y; Li J; Pan S; Chen J; Caruso F
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1711-1717. PubMed ID: 31763728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation.
    Ni C; Hou J; Li L; Li Y; Wang M; Yin H; Tan W
    Chemosphere; 2020 Jul; 250():126211. PubMed ID: 32113097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis.
    Panetti GB; Robinson JR; Schelter EJ; Walsh PJ
    Acc Chem Res; 2021 Jun; 54(11):2637-2648. PubMed ID: 34014657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity of phenolic compounds for transition metal ions immobilized on cation-exchange columns.
    Ura T; Kameda T; Laksmi FA; Ishibashi M; Arakawa T; Shiraki K; Hirano A
    J Chromatogr A; 2022 Aug; 1676():463277. PubMed ID: 35809525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching Ion Binding Selectivity of Thiacalix[4]arene Monocrowns at Liquid-Liquid and 2D-Confined Interfaces.
    Muravev A; Yakupov A; Gerasimova T; Nugmanov R; Trushina E; Babaeva O; Nizameeva G; Syakaev V; Katsyuba S; Selektor S; Solovieva S; Antipin I
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning.
    Nandy A; Duan C; Taylor MG; Liu F; Steeves AH; Kulik HJ
    Chem Rev; 2021 Aug; 121(16):9927-10000. PubMed ID: 34260198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.