BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35537180)

  • 1. Thiazole Containing PNA Mimic Regulates
    Gorai A; Chaudhuri R; Mukhopadhyay TK; Datta A; Dash J
    Bioconjug Chem; 2022 Jun; 33(6):1145-1155. PubMed ID: 35537180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell penetrating thiazole peptides inhibit c-MYC expression via site-specific targeting of c-MYC G-quadruplex.
    Dutta D; Debnath M; Müller D; Paul R; Das T; Bessi I; Schwalbe H; Dash J
    Nucleic Acids Res; 2018 Jun; 46(11):5355-5365. PubMed ID: 29762718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region.
    Onyshchenko MI; Gaynutdinov TI; Englund EA; Appella DH; Neumann RD; Panyutin IG
    Nucleic Acids Res; 2011 Sep; 39(16):7114-23. PubMed ID: 21593130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strand invasion of DNA quadruplexes by PNA: comparison of homologous and complementary hybridization.
    Gupta A; Lee LL; Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Chembiochem; 2013 Aug; 14(12):1476-84. PubMed ID: 23868291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bisindolylmaleimide Ligands Stabilize
    Kumar S; Reddy Sannapureddi RK; Todankar CS; Ramanathan R; Biswas A; Sathyamoorthy B; Pradeepkumar PI
    Biochemistry; 2022 Jun; 61(11):1064-1076. PubMed ID: 35584037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenanthroline polyazamacrocycles as G-quadruplex DNA binders.
    Carvalho J; Quintela T; Gueddouda NM; Bourdoncle A; Mergny JL; Salgado GF; Queiroz JA; Cruz C
    Org Biomol Chem; 2018 Apr; 16(15):2776-2786. PubMed ID: 29611599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model.
    Tassinari M; Zuffo M; Nadai M; Pirota V; Sevilla Montalvo AC; Doria F; Freccero M; Richter SN
    Nucleic Acids Res; 2020 May; 48(9):4627-4642. PubMed ID: 32282912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanine anchoring: a strategy for specific targeting of a G-quadruplex using short PNA, LNA and DNA molecules.
    Tan DJY; Das P; Winnerdy FR; Lim KW; Phan AT
    Chem Commun (Camb); 2020 Jun; 56(44):5897-5900. PubMed ID: 32338660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs.
    Onyshchenko MI; Gaynutdinov TI; Englund EA; Appella DH; Neumann RD; Panyutin IG
    Nucleic Acids Res; 2009 Dec; 37(22):7570-80. PubMed ID: 19820116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting G-Quadruplexes with PNA Oligomers.
    Armitage BA
    Methods Mol Biol; 2019; 2035():333-345. PubMed ID: 31444760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G-rich sequence-specific recognition and scission of human genome by PNA/DNA hybrid G-quadruplex formation.
    Ishizuka T; Yang J; Komiyama M; Xu Y
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7198-202. PubMed ID: 22700182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenanthroline-bis-oxazole ligands for binding and stabilization of G-quadruplexes.
    Medeiros-Silva J; Guédin A; Salgado GF; Mergny JL; Queiroz JA; Cabrita EJ; Cruz C
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1281-1292. PubMed ID: 27865994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting DNA G-quadruplex structures with peptide nucleic acids.
    Panyutin IG; Onyshchenko MI; Englund EA; Appella DH; Neumann RD
    Curr Pharm Des; 2012; 18(14):1984-91. PubMed ID: 22376112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting nucleic acids with a G-triplex-to-G-quadruplex transformation and stabilization using a peptide-PNA G-tract conjugate.
    Wen CJ; Gong JY; Zheng KW; He YD; Zhang JY; Hao YH; Tan Z
    Chem Commun (Camb); 2020 Jun; 56(48):6567-6570. PubMed ID: 32396929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA.
    Giri B; Smaldino PJ; Thys RG; Creacy SD; Routh ED; Hantgan RR; Lattmann S; Nagamine Y; Akman SA; Vaughn JP
    Nucleic Acids Res; 2011 Sep; 39(16):7161-78. PubMed ID: 21586581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization and fluorescence light-up of G-quadruplex nucleic acids using indolyl-quinolinium based probes.
    Biswas A; Singh SB; Todankar CS; Sudhakar S; Pany SPP; Pradeepkumar PI
    Phys Chem Chem Phys; 2022 Mar; 24(10):6238-6255. PubMed ID: 35229834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure.
    Seenisamy J; Bashyam S; Gokhale V; Vankayalapati H; Sun D; Siddiqui-Jain A; Streiner N; Shin-Ya K; White E; Wilson WD; Hurley LH
    J Am Chem Soc; 2005 Mar; 127(9):2944-59. PubMed ID: 15740131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase η extension.
    Murphy CT; Gupta A; Armitage BA; Opresko PL
    Biochemistry; 2014 Aug; 53(32):5315-22. PubMed ID: 25068499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loop and backbone modifications of peptide nucleic acid improve g-quadruplex binding selectivity.
    Lusvarghi S; Murphy CT; Roy S; Tanious FA; Sacui I; Wilson WD; Ly DH; Armitage BA
    J Am Chem Soc; 2009 Dec; 131(51):18415-24. PubMed ID: 19947597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.