These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35537874)

  • 1. A latent feature oriented dictionary learning method for closed-loop process monitoring.
    Huang K; Zhang L; Sun B; Liang X; Yang C; Gui W
    ISA Trans; 2022 Dec; 131():552-565. PubMed ID: 35537874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse Wasserstein stationary subspace analysis for fault detection and diagnosis of nonstationary industrial processes.
    Huang K; Li J; Wu D; Liu Y; Yang C; Gui W
    ISA Trans; 2024 Aug; 151():285-295. PubMed ID: 38845235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adaptive metaheuristic optimization approach for Tennessee Eastman process for an industrial fault tolerant control system.
    Mustafa FE; Ahmed I; Basit A; Alqahtani M; Khalid M
    PLoS One; 2024; 19(2):e0296471. PubMed ID: 38381738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Spatial-Temporal Variational Graph Attention Autoencoder Using Interactive Information for Fault Detection in Complex Industrial Processes.
    Lv M; Li Y; Liang H; Sun B; Yang C; Gui W
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3062-3076. PubMed ID: 37938955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EaLDL: Element-Aware Lifelong Dictionary Learning for Multimode Process Monitoring.
    Huang K; Zhu H; Wu D; Yang C; Gui W
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38145510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fault detection for chemical processes based on non-stationarity sensitive cointegration analysis.
    Huang J; Sun X; Yang X; Peng K
    ISA Trans; 2022 Oct; 129(Pt B):321-333. PubMed ID: 35190195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear full condition process monitoring method for hot rolling process with dynamic characteristic.
    Zhang C; Peng K; Dong J
    ISA Trans; 2021 Jun; 112():363-372. PubMed ID: 33276968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive process monitoring via online dictionary learning and its industrial application.
    Huang K; Wu Y; Long C; Ji H; Sun B; Chen X; Yang C
    ISA Trans; 2021 Aug; 114():399-412. PubMed ID: 33397583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent Diagnosis Method for Rotating Machinery Using Dictionary Learning and Singular Value Decomposition.
    Han T; Jiang D; Zhang X; Sun Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28346385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Cointegration Analysis and Modified RPCA With Continual Learning Ability for Monitoring Multimode Nonstationary Processes.
    Zhang J; Zhou D; Chen M
    IEEE Trans Cybern; 2023 Aug; 53(8):4841-4854. PubMed ID: 35139034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable-weighted FDA combined with t-SNE and multiple extreme learning machines for visual industrial process monitoring.
    Lu W; Yan X
    ISA Trans; 2022 Mar; 122():163-171. PubMed ID: 33972079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis.
    Li C; Zhou Z; Wen C; Li Z
    ACS Omega; 2022 Mar; 7(8):6978-6990. PubMed ID: 35252689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified neighborhood preserving embedding-based incipient fault detection with applications to small-scale cyber-physical systems.
    Chen H; Wu J; Jiang B; Chen W
    ISA Trans; 2020 Sep; 104():175-183. PubMed ID: 31466727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Diffusion Model Based on Network Intrusion Detection Method for Industrial Cyber-Physical Systems.
    Tang B; Lu Y; Li Q; Bai Y; Yu J; Yu X
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes.
    Gao H; Huang W; Gao X; Han H
    ISA Trans; 2023 Aug; 139():216-228. PubMed ID: 37202232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault Identification for a Closed-Loop Control System Based on an Improved Deep Neural Network.
    Sun B; Wang J; He Z; Zhou H; Gu F
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31071991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incremental Variational Bayesian Gaussian Mixture Model With Decremental Optimization for Distribution Accommodation and Fine-Scale Adaptive Process Monitoring.
    Dai Q; Zhao C; Huang B
    IEEE Trans Cybern; 2023 Aug; 53(8):5094-5107. PubMed ID: 35666782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network.
    Wang Y; Pan Z; Yuan X; Yang C; Gui W
    ISA Trans; 2020 Jan; 96():457-467. PubMed ID: 31324340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Change Detection Method for Remote Sensing Images Based on Coupled Dictionary and Deep Learning.
    Yang W; Song H; Du L; Dai S; Xu Y
    Comput Intell Neurosci; 2022; 2022():3404858. PubMed ID: 35082842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local-Global Modeling and Distributed Computing Framework for Nonlinear Plant-Wide Process Monitoring With Industrial Big Data.
    Jiang Q; Yan S; Cheng H; Yan X
    IEEE Trans Neural Netw Learn Syst; 2021 Aug; 32(8):3355-3365. PubMed ID: 32324574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.