BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3553866)

  • 1. Degradation of the pyrimidine bases uracil and thymine by Escherichia coli B.
    Patel BN; West TP
    Microbios; 1987; 49(199):107-13. PubMed ID: 3553866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrimidine base catabolism in Pseudomonas putida biotype B.
    West TP
    Antonie Van Leeuwenhoek; 2001 Oct; 80(2):163-7. PubMed ID: 11759049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?
    Van Kuilenburg AB; Stroomer AE; Van Lenthe H; Abeling NG; Van Gennip AH
    Biochem J; 2004 Apr; 379(Pt 1):119-24. PubMed ID: 14705962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrimidine catabolism in Pseudomonas aeruginosa.
    Kim S; West TP
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of pyrimidine bases in Clostridium sticklandii.
    Schäfer R; Schwartz AC
    Arch Microbiol; 1980 Jan; 124(1):111-4. PubMed ID: 7377903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of an Escherichia coli B mutant strain defective in uracil catabolism.
    West TP
    Can J Microbiol; 1998 Nov; 44(11):1106-9. PubMed ID: 10030006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of pyrimidine bases and nucleosides by Pseudomonas fluorescens biotype F.
    West TP
    Microbios; 1988; 56(226):27-36. PubMed ID: 3148844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uracil catabolism by Escherichia coli K12S.
    Simaga S; Kos E
    Z Naturforsch C Biosci; 1978; 33(11-12):1006-8. PubMed ID: 154218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymine and uracil catabolism in Escherichia coli.
    Ban J; Vitale L; Kos E
    J Gen Microbiol; 1972 Nov; 73(2):267-72. PubMed ID: 4567228
    [No Abstract]   [Full Text] [Related]  

  • 11. RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines.
    Shimada T; Hirao K; Kori A; Yamamoto K; Ishihama A
    Mol Microbiol; 2007 Nov; 66(3):744-57. PubMed ID: 17919280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase.
    Tuchman M; Ramnaraine ML; O'Dea RF
    Cancer Res; 1985 Nov; 45(11 Pt 1):5553-6. PubMed ID: 4053028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile preparation of purine and pyrimidine 2-deoxy-beta-D-ribonucleosides by biotransformation on encapsulated cells.
    Holý A; Votruba I
    Nucleic Acids Symp Ser; 1987; (18):69-72. PubMed ID: 3320976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas putida PydR, a RutR-like transcriptional regulator, represses the dihydropyrimidine dehydrogenase gene in the pyrimidine reductive catabolic pathway.
    Hidese R; Mihara H; Kurihara T; Esaki N
    J Biochem; 2012 Oct; 152(4):341-6. PubMed ID: 22782928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes.
    Andersen G; Björnberg O; Polakova S; Pynyaha Y; Rasmussen A; Møller K; Hofer A; Moritz T; Sandrini MP; Merico AM; Compagno C; Akerlund HE; Gojković Z; Piskur J
    J Mol Biol; 2008 Jul; 380(4):656-66. PubMed ID: 18550080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Pathway for Degradation of Uracil to Acetyl Coenzyme A in Bacillus megaterium.
    Zhu D; Wei Y; Yin J; Liu D; Ang EL; Zhao H; Zhang Y
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine.
    Yin J; Wei Y; Liu D; Hu Y; Lu Q; Ang EL; Zhao H; Zhang Y
    J Biol Chem; 2019 Oct; 294(43):15662-15671. PubMed ID: 31455636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of 5-fluorouracil catabolism in isolated rat hepatocytes with enhancement of 5-fluorouracil glucuronide formation.
    Sommadossi JP; Gewirtz DA; Cross DS; Goldman ID; Cano JP; Diasio RB
    Cancer Res; 1985 Jan; 45(1):116-21. PubMed ID: 3965128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency.
    Schnackerz KD; Dobritzsch D
    Biochim Biophys Acta; 2008 Mar; 1784(3):431-44. PubMed ID: 18261476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biosynthetic origin of the pyridone ring of efrotomycin.
    Darland G; Arison B; Kaplan L
    J Ind Microbiol; 1991 Nov; 8(4):265-71. PubMed ID: 1367801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.