BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35538664)

  • 1. Identification of core allosteric sites through temperature- and nucleus-invariant chemical shift covariance.
    Mohamed H; Baryar U; Bashiri A; Selvaratnam R; VanSchouwen B; Melacini G
    Biophys J; 2022 Jun; 121(11):2035-2045. PubMed ID: 35538664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping allostery through the covariance analysis of NMR chemical shifts.
    Selvaratnam R; Chowdhury S; VanSchouwen B; Melacini G
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6133-8. PubMed ID: 21444788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tool set to map allosteric networks through the NMR chemical shift covariance analysis.
    Boulton S; Akimoto M; Selvaratnam R; Bashiri A; Melacini G
    Sci Rep; 2014 Dec; 4():7306. PubMed ID: 25482377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.
    Boulton S; Selvaratnam R; Ahmed R; Melacini G
    Methods Mol Biol; 2018; 1688():391-405. PubMed ID: 29151219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.
    Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G
    J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cAMP-dependent allostery and dynamics in Epac: an NMR view.
    Selvaratnam R; Akimoto M; VanSchouwen B; Melacini G
    Biochem Soc Trans; 2012 Feb; 40(1):219-23. PubMed ID: 22260694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Selective Enzyme Inhibition through Uncompetitive Regulation of an Allosteric Agonist.
    Boulton S; Selvaratnam R; Blondeau JP; Lezoualc'h F; Melacini G
    J Am Chem Soc; 2018 Aug; 140(30):9624-9637. PubMed ID: 30016089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The auto-inhibitory role of the EPAC hinge helix as mapped by NMR.
    Selvaratnam R; Mazhab-Jafari MT; Das R; Melacini G
    PLoS One; 2012; 7(11):e48707. PubMed ID: 23185272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The projection analysis of NMR chemical shifts reveals extended EPAC autoinhibition determinants.
    Selvaratnam R; VanSchouwen B; Fogolari F; Mazhab-Jafari MT; Das R; Melacini G
    Biophys J; 2012 Feb; 102(3):630-9. PubMed ID: 22325287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric inhibition of Epac: computational modeling and experimental validation to identify allosteric sites and inhibitors.
    Brown LM; Rogers KE; Aroonsakool N; McCammon JA; Insel PA
    J Biol Chem; 2014 Oct; 289(42):29148-57. PubMed ID: 25183009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHESPA/CHESCA-SPARKY: automated NMR data analysis plugins for SPARKY to map protein allostery.
    Shao H; Boulton S; Olivieri C; Mohamed H; Akimoto M; Subrahmanian MV; Veglia G; Markley JL; Melacini G; Lee W
    Bioinformatics; 2021 May; 37(8):1176-1177. PubMed ID: 32926121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using NMR to Develop New Allosteric and Allo-Network Drugs.
    Smith RE; Tran K; Richards KM; Luo R
    Curr Drug Discov Technol; 2015; 12(4):193-204. PubMed ID: 26577663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy-driven cAMP-dependent allosteric control of inhibitory interactions in exchange proteins directly activated by cAMP.
    Das R; Mazhab-Jafari MT; Chowdhury S; SilDas S; Selvaratnam R; Melacini G
    J Biol Chem; 2008 Jul; 283(28):19691-703. PubMed ID: 18411261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of dynamics in the autoinhibition and activation of the exchange protein directly activated by cyclic AMP (EPAC).
    VanSchouwen B; Selvaratnam R; Fogolari F; Melacini G
    J Biol Chem; 2011 Dec; 286(49):42655-42669. PubMed ID: 21873431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping allosteric communications within individual proteins.
    Wang J; Jain A; McDonald LR; Gambogi C; Lee AL; Dokholyan NV
    Nat Commun; 2020 Jul; 11(1):3862. PubMed ID: 32737291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamically driven ligand selectivity in cyclic nucleotide binding domains.
    Das R; Chowdhury S; Mazhab-Jafari MT; Sildas S; Selvaratnam R; Melacini G
    J Biol Chem; 2009 Aug; 284(35):23682-96. PubMed ID: 19403523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structurally distributed surface sites tune allosteric regulation.
    McCormick JW; Russo MA; Thompson S; Blevins A; Reynolds KA
    Elife; 2021 Jun; 10():. PubMed ID: 34132193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of coordinated NMR chemical shifts to map allosteric regulatory networks in proteins.
    Skeens E; Lisi GP
    Methods; 2023 Jan; 209():40-47. PubMed ID: 36535575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac.
    Rehmann H; Rueppel A; Bos JL; Wittinghofer A
    J Biol Chem; 2003 Jun; 278(26):23508-14. PubMed ID: 12707263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.
    Stetz G; Verkhivker GM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005299. PubMed ID: 28095400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.