BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35538780)

  • 1. A sterol-mediated gleaner-opportunist trade-off underlies the evolution of grazer resistance to cyanobacteria.
    Isanta-Navarro J; Klauschies T; Wacker A; Martin-Creuzburg D
    Proc Biol Sci; 2022 May; 289(1974):20220178. PubMed ID: 35538780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversed evolution of grazer resistance to cyanobacteria.
    Isanta-Navarro J; Hairston NG; Beninde J; Meyer A; Straile D; Möst M; Martin-Creuzburg D
    Nat Commun; 2021 Mar; 12(1):1945. PubMed ID: 33782425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity?
    Hairston NG; Holtmeier CL; Lampert W; Weider LJ; Post DM; Fischer JM; Cáceres CE; Fox JA; Gaedke U
    Evolution; 2001 Nov; 55(11):2203-14. PubMed ID: 11794781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the gleaner-opportunist trade-off.
    Yamamichi M; Letten AD
    J Anim Ecol; 2022 Nov; 91(11):2163-2170. PubMed ID: 36102615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata).
    von Elert E; Martin-Creuzburg D; Le Coz JR
    Proc Biol Sci; 2003 Jun; 270(1520):1209-14. PubMed ID: 12816661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of sterols constrains food quality of cyanobacteria for an invasive freshwater bivalve.
    Basen T; Rothhaupt KO; Martin-Creuzburg D
    Oecologia; 2012 Sep; 170(1):57-64. PubMed ID: 22398861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative Effects of Cyanotoxins and Adaptative Responses of
    Schwarzenberger A
    Toxins (Basel); 2022 Nov; 14(11):. PubMed ID: 36356020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life history consequences of sterol availability in the aquatic keystone species Daphnia.
    Martin-Creuzburg D; Wacker A; von Elert E
    Oecologia; 2005 Jul; 144(3):362-72. PubMed ID: 15891820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation.
    Ekvall MK; Urrutia-Cordero P; Hansson LA
    PLoS One; 2014; 9(11):e112956. PubMed ID: 25409309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid evolution promotes fluctuation-dependent species coexistence.
    Yamamichi M; Letten AD
    Ecol Lett; 2021 Apr; 24(4):812-818. PubMed ID: 33617685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paleogenetic records of Daphnia pulicaria in two North American lakes reveal the impact of cultural eutrophication.
    Frisch D; Morton PK; Culver BW; Edlund MB; Jeyasingh PD; Weider LJ
    Glob Chang Biol; 2017 Feb; 23(2):708-718. PubMed ID: 27474788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the genetic basis of microcystin tolerance.
    Schwarzenberger A; Sadler T; Motameny S; Ben-Khalifa K; Frommolt P; Altmüller J; Konrad K; von Elert E
    BMC Genomics; 2014 Sep; 15(1):776. PubMed ID: 25199885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community.
    Schaffner LR; Govaert L; De Meester L; Ellner SP; Fairchild E; Miner BE; Rudstam LG; Spaak P; Hairston NG
    Nat Ecol Evol; 2019 Sep; 3(9):1351-1358. PubMed ID: 31427731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consumer adaptation mediates top-down regulation across a productivity gradient.
    Chislock MF; Sarnelle O; Jernigan LM; Anderson VR; Abebe A; Wilson AE
    Oecologia; 2019 May; 190(1):195-205. PubMed ID: 30989361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial blooms modify food web structure and interactions in western Lake Erie.
    Briland RD; Stone JP; Manubolu M; Lee J; Ludsin SA
    Harmful Algae; 2020 Feb; 92():101586. PubMed ID: 32113601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature and dietary sterol availability on growth and cholesterol allocation of the aquatic keystone species Daphnia.
    Sperfeld E; Wacker A
    J Exp Biol; 2009 Oct; 212(19):3051-9. PubMed ID: 19749097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes.
    Taipale SJ; Vuorio K; Aalto SL; Peltomaa E; Tiirola M
    Environ Res; 2019 Dec; 179(Pt B):108836. PubMed ID: 31708172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario.
    Urrutia-Cordero P; Ekvall MK; Hansson LA
    PLoS One; 2016; 11(4):e0153032. PubMed ID: 27043823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thresholds for sterol-limited growth of Daphnia magna: a comparative approach using 10 different sterols.
    Martin-Creuzburg D; Oexle S; Wacker A
    J Chem Ecol; 2014 Sep; 40(9):1039-50. PubMed ID: 25228231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?
    Chislock MF; Sarnelle O; Jernigan LM; Wilson AE
    Water Res; 2013 Apr; 47(6):1961-70. PubMed ID: 23395484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.