BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35539031)

  • 1. A collection of forcefield precursors for metal-organic frameworks.
    Chen T; Manz TA
    RSC Adv; 2019 Nov; 9(63):36492-36507. PubMed ID: 35539031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and Accurate Machine Learning Strategy for Calculating Partial Atomic Charges in Metal-Organic Frameworks.
    Kancharlapalli S; Gopalan A; Haranczyk M; Snurr RQ
    J Chem Theory Comput; 2021 May; 17(5):3052-3064. PubMed ID: 33739834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametrization of Nonbonded Force Field Terms for Metal-Organic Frameworks Using Machine Learning Approach.
    Korolev VV; Nevolin YM; Manz TA; Protsenko PV
    J Chem Inf Model; 2021 Dec; 61(12):5774-5784. PubMed ID: 34787430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying misbonded atoms in the 2019 CoRE metal-organic framework database.
    Chen T; Manz TA
    RSC Adv; 2020 Jul; 10(45):26944-26951. PubMed ID: 35515793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New scaling relations to compute atom-in-material polarizabilities and dispersion coefficients: part 1. Theory and accuracy.
    Manz TA; Chen T; Cole DJ; Limas NG; Fiszbein B
    RSC Adv; 2019 Jun; 9(34):19297-19324. PubMed ID: 35519408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking various types of partial atomic charges for classical all-atom simulations of metal-organic frameworks.
    Liu S; Luan B
    Nanoscale; 2022 Jul; 14(26):9466-9473. PubMed ID: 35748335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO
    Zheng B; Oliveira FL; Neumann Barros Ferreira R; Steiner M; Hamann H; Gu GX; Luan B
    ACS Nano; 2023 Mar; 17(6):5579-5587. PubMed ID: 36883740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator.
    Anisimov VM; Lamoureux G; Vorobyov IV; Huang N; Roux B; MacKerell AD
    J Chem Theory Comput; 2005 Jan; 1(1):153-68. PubMed ID: 26641126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forcefield_PTM:
    Khoury GA; Thompson JP; Smadbeck J; Kieslich CA; Floudas CA
    J Chem Theory Comput; 2013 Dec; 9(12):5653-5674. PubMed ID: 24489522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generally applicable atomic-charge dependent London dispersion correction.
    Caldeweyher E; Ehlert S; Hansen A; Neugebauer H; Spicher S; Bannwarth C; Grimme S
    J Chem Phys; 2019 Apr; 150(15):154122. PubMed ID: 31005066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarizable Force Field for CO
    Becker TM; Lin LC; Dubbeldam D; Vlugt TJH
    J Phys Chem C Nanomater Interfaces; 2018 Oct; 122(42):24488-24498. PubMed ID: 30774742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Neural Network Model to Predict the Electrostatic Parameters in the Polarizable Classical Drude Oscillator Force Field.
    Kumar A; Pandey P; Chatterjee P; MacKerell AD
    J Chem Theory Comput; 2022 Mar; 18(3):1711-1725. PubMed ID: 35148088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and molecular properties of complexes of biomolecules and metal-organic frameworks: dispersion-corrected DFT treatment.
    Bakhshandeh A; Ardestani F; Ghorbani HR; Darvish Ganji M
    J Mol Model; 2022 Jan; 28(2):32. PubMed ID: 35018501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of the D3 dispersion coefficient model.
    Caldeweyher E; Bannwarth C; Grimme S
    J Chem Phys; 2017 Jul; 147(3):034112. PubMed ID: 28734285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRAFTED: An exploratory database of simulated adsorption isotherms of metal-organic frameworks.
    Oliveira FL; Cleeton C; Neumann Barros Ferreira R; Luan B; Farmahini AH; Sarkisov L; Steiner M
    Sci Data; 2023 Apr; 10(1):230. PubMed ID: 37081024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general forcefield for accurate phonon properties of metal-organic frameworks.
    Bristow JK; Skelton JM; Svane KL; Walsh A; Gale JD
    Phys Chem Chem Phys; 2016 Oct; 18(42):29316-29329. PubMed ID: 27731872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
    Rupakheti CR; MacKerell AD; Roux B
    J Chem Theory Comput; 2021 Nov; 17(11):7085-7095. PubMed ID: 34609863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of GFN1-xTB for periodic optimization of metal organic frameworks.
    Nurhuda M; Perry CC; Addicoat MA
    Phys Chem Chem Phys; 2022 May; 24(18):10906-10914. PubMed ID: 35451436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.