These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35539307)
41. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Kellock M; Maaheimo H; Marjamaa K; Rahikainen J; Zhang H; Holopainen-Mantila U; Ralph J; Tamminen T; Felby C; Kruus K Bioresour Technol; 2019 May; 280():303-312. PubMed ID: 30776657 [TBL] [Abstract][Full Text] [Related]
42. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Guo F; Shi W; Sun W; Li X; Wang F; Zhao J; Qu Y Biotechnol Biofuels; 2014 Mar; 7(1):38. PubMed ID: 24624960 [TBL] [Abstract][Full Text] [Related]
43. Thermoplasticity reinforcement of ethanol organosolv lignin to improve compatibility in PLA-based ligno-bioplastics: Focusing on the structural characteristics of lignin. Choi JH; Kim JH; Lee SY; Jang SK; Kwak HW; Kim H; Choi IG Int J Biol Macromol; 2022 Jun; 209(Pt B):1638-1647. PubMed ID: 35469955 [TBL] [Abstract][Full Text] [Related]
44. The structural characterization and antioxidant properties of oil palm fronds lignin incorporated with p-hydroxyacetophenone. Latif NHA; Rahim AA; Brosse N; Hussin MH Int J Biol Macromol; 2019 Jun; 130():947-957. PubMed ID: 30851323 [TBL] [Abstract][Full Text] [Related]
45. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion. Obama P; Ricochon G; Muniglia L; Brosse N Bioresour Technol; 2012 May; 112():156-63. PubMed ID: 22424922 [TBL] [Abstract][Full Text] [Related]
46. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Nakagame S; Chandra RP; Kadla JF; Saddler JN Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506 [TBL] [Abstract][Full Text] [Related]
47. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. Lou H; Zhu JY; Lan TQ; Lai H; Qiu X ChemSusChem; 2013 May; 6(5):919-27. PubMed ID: 23554287 [TBL] [Abstract][Full Text] [Related]
48. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. Martín-Sampedro R; Santos JI; Eugenio ME; Wicklein B; Jiménez-López L; Ibarra D Int J Biol Macromol; 2019 Nov; 140():311-322. PubMed ID: 31408656 [TBL] [Abstract][Full Text] [Related]
49. The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Tu M; Zhang X; Paice M; MacFarlane P; Saddler JN Bioresour Technol; 2009 Dec; 100(24):6407-15. PubMed ID: 19632826 [TBL] [Abstract][Full Text] [Related]
50. Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. Huang C; Zhao X; Zheng Y; Lin W; Lai C; Yong Q; Ragauskas AJ; Meng X Bioresour Technol; 2022 Sep; 360():127524. PubMed ID: 35764283 [TBL] [Abstract][Full Text] [Related]
51. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Tu M; Chandra RP; Saddler JN Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581 [TBL] [Abstract][Full Text] [Related]
52. Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. Martín-Sampedro R; Santos JI; Fillat Ú; Wicklein B; Eugenio ME; Ibarra D Int J Biol Macromol; 2019 Apr; 126():18-29. PubMed ID: 30572057 [TBL] [Abstract][Full Text] [Related]
53. Fibre size does not appear to influence the ease of enzymatic hydrolysis of organosolv-pretreated softwoods. Del Rio LF; Chandra RP; Saddler JN Bioresour Technol; 2012 Mar; 107():235-42. PubMed ID: 22243924 [TBL] [Abstract][Full Text] [Related]
54. Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin. Cai C; Qiu X; Zeng M; Lin M; Lin X; Lou H; Zhan X; Pang Y; Huang J; Xie L Bioresour Technol; 2017 Mar; 227():74-81. PubMed ID: 28013139 [TBL] [Abstract][Full Text] [Related]
55. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Wang Z; Lan T; Zhu J Biotechnol Biofuels; 2013 Jan; 6(1):9. PubMed ID: 23356796 [TBL] [Abstract][Full Text] [Related]
56. The pre-addition of "blocking" proteins decreases subsequent cellulase adsorption to lignin and enhances cellulose hydrolysis. Liu J; Wu J; Lu Y; Zhang H; Hua Q; Bi R; Rojas O; Renneckar S; Fan S; Xiao Z; Saddler J Bioresour Technol; 2023 Jan; 367():128276. PubMed ID: 36347476 [TBL] [Abstract][Full Text] [Related]
57. Lignin-grafted quaternary ammonium phosphate with temperature and pH responsive behavior for improved enzymatic hydrolysis and cellulase recovery. Li F; Liang H; Shan J; Zhang A; Lou H; Tang Y Int J Biol Macromol; 2023 Apr; 234():123779. PubMed ID: 36812966 [TBL] [Abstract][Full Text] [Related]
58. Carboxylated and quaternized lignin enhanced enzymatic hydrolysis of lignocellulose treated by p-toluenesulfonic acid due to improving enzyme activity. Xiong Q; Qiao J; Wang M; Li S; Li X Bioresour Technol; 2021 Oct; 337():125465. PubMed ID: 34320745 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of the action of Tween 20 non-ionic surfactant during enzymatic hydrolysis of lignocellulose: Pretreatment, hydrolysis conditions and lignin structure. Chen YA; Zhou Y; Qin Y; Liu D; Zhao X Bioresour Technol; 2018 Dec; 269():329-338. PubMed ID: 30195225 [TBL] [Abstract][Full Text] [Related]
60. Enzymatic sugar production from elephant grass and reed straw through pretreatments and hydrolysis with addition of thioredoxin-His-S. Lu X; Li C; Zhang S; Wang X; Zhang W; Wang S; Xia T Biotechnol Biofuels; 2019; 12():297. PubMed ID: 31890025 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]