These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35539307)

  • 61. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content.
    Pan X; Xie D; Gilkes N; Gregg DJ; Saddler JN
    Appl Biochem Biotechnol; 2005; 121-124():1069-79. PubMed ID: 15930582
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate.
    Cai C; Qiu X; Lin X; Lou H; Pang Y; Yang D; Chen S; Cai K
    Bioresour Technol; 2016 Sep; 216():968-75. PubMed ID: 27343448
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Novel Kinetic Modeling of Enzymatic Hydrolysis of Sugarcane Bagasse Pretreated by Hydrothermal and Organosolv Processes.
    Moreira Neto J; Costa JM; Bonomi A; Costa AC
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513489
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Combined rapid-steam hydrolysis and organosolv pretreatment of mixed southern hardwoods.
    Rughani J; McGinnis GD
    Biotechnol Bioeng; 1989 Feb; 33(6):681-6. PubMed ID: 18587968
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effect of p-nitrophenol toward the structural characteristics and antioxidant activity of oil palm fronds (OPF) lignin polymers.
    Sa'don NA; Rahim AA; Hussin MH
    Int J Biol Macromol; 2017 May; 98():701-708. PubMed ID: 28174085
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Modified 1,4-butanediol organosolv pretreatment on hardwoodandsoftwood for efficient coproduction of fermentable sugars and lignin antioxidants.
    Fang H; Xie X; Chu Q; Tong W; Song K
    Bioresour Technol; 2023 May; 376():128854. PubMed ID: 36898561
    [TBL] [Abstract][Full Text] [Related]  

  • 67. SO2 -catalyzed steam explosion: the effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass.
    Kang Y; Bansal P; Realff MJ; Bommarius AS
    Biotechnol Prog; 2013; 29(4):909-16. PubMed ID: 23749425
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cellulose induced protein 1 (Cip1) from Trichoderma reesei enhances the enzymatic hydrolysis of pretreated lignocellulose.
    Jia H; Sun W; Li X; Zhao J
    Microb Cell Fact; 2021 Jul; 20(1):136. PubMed ID: 34281536
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics.
    Kellock M; Rahikainen J; Marjamaa K; Kruus K
    Bioresour Technol; 2017 May; 232():183-191. PubMed ID: 28231536
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida).
    Park N; Kim HY; Koo BW; Yeo H; Choi IG
    Bioresour Technol; 2010 Sep; 101(18):7057-64. PubMed ID: 20435474
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of structural changes of lignin during the autohydrolysis and organosolv pretreatment on Eucommia ulmoides Oliver for an effective enzymatic hydrolysis.
    Zhu MQ; Wen JL; Su YQ; Wei Q; Sun RC
    Bioresour Technol; 2015 Jun; 185():378-85. PubMed ID: 25754353
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Organosolv fractionation of spruce bark using ethanol-water mixtures: Towards a novel bio-refinery concept.
    Hrůzová K; Matsakas L; Rova U; Christakopoulos P
    Bioresour Technol; 2021 Dec; 341():125855. PubMed ID: 34523546
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of catalytically non-productive adsorption of fungal proteins to lignins and pseudo-lignin using isobaric mass tagging.
    Wang Z; Jönsson LJ
    Bioresour Technol; 2018 Nov; 268():393-401. PubMed ID: 30099290
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of alkaline lignin modification on cellulase-lignin interactions and enzymatic saccharification yield.
    Ying W; Shi Z; Yang H; Xu G; Zheng Z; Yang J
    Biotechnol Biofuels; 2018; 11():214. PubMed ID: 30083227
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of NaOH-catalyzed organosolv pretreatment and surfactant on the sugar production from sugarcane bagasse.
    Zhang H; Zhang J; Xie J; Qin Y
    Bioresour Technol; 2020 Sep; 312():123601. PubMed ID: 32502887
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(3):807-19. PubMed ID: 19504581
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.
    Machado DL; Moreira Neto J; da Cruz Pradella JG; Bonomi A; Rabelo SC; da Costa AC
    Biotechnol Appl Biochem; 2015; 62(5):681-9. PubMed ID: 25322902
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biosurfactant promoted enzymatic saccharification of alkali‑pretreated reed straw.
    Zhang X; Wang Y; Lu J; Liu M; Tan W; Cheng Y; Tao Y; Du J; Wang H
    Bioresour Technol; 2023 Mar; 372():128665. PubMed ID: 36693508
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80.
    Zhang H; Fan M; Li X; Zhang A; Xie J
    Bioresour Technol; 2018 Jun; 258():295-301. PubMed ID: 29555585
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inhibition of enzymatic hydrolysis by residual lignins from softwood--study of enzyme binding and inactivation on lignin-rich surface.
    Rahikainen J; Mikander S; Marjamaa K; Tamminen T; Lappas A; Viikari L; Kruus K
    Biotechnol Bioeng; 2011 Dec; 108(12):2823-34. PubMed ID: 21702025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.