These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35539416)

  • 1. Efficient separation of rare earths recovered by a supported ionic liquid from bauxite residue leachate.
    Avdibegović D; Regadío M; Binnemans K
    RSC Adv; 2018 Mar; 8(22):11886-11893. PubMed ID: 35539416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmCo magnets by a supported ionic liquid phase.
    Avdibegović D; Binnemans K
    RSC Adv; 2021 Feb; 11(14):8207-8217. PubMed ID: 35423291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of Scandium from Hydrochloric Acid-Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase.
    Avdibegović D; Binnemans K
    Ind Eng Chem Res; 2020 Aug; 59(34):15332-15342. PubMed ID: 32952290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes.
    Smith RC; Taggart RK; Hower JC; Wiesner MR; Hsu-Kim H
    Environ Sci Technol; 2019 Apr; 53(8):4490-4499. PubMed ID: 30907587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment.
    Reid S; Tam J; Yang M; Azimi G
    Sci Rep; 2017 Nov; 7(1):15252. PubMed ID: 29127406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Scandium (Sc) Extraction from Bauxite Residue (Red Mud) Obtained by Alkali Fusion-Leaching Method.
    Shoppert A; Loginova I; Napol'skikh J; Kyrchikov A; Chaikin L; Rogozhnikov D; Valeev D
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC.
    Tsakanika LV; Ochsenkühn-Petropoulou MT; Mendrinos LN
    Anal Bioanal Chem; 2004 Jul; 379(5-6):796-802. PubMed ID: 15221192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.
    Stoy L; Diaz V; Huang CH
    Environ Sci Technol; 2021 Jul; 55(13):9209-9220. PubMed ID: 34159779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing Recyclable Task-Specific Ionic Liquid for Selective Leaching and Refining of Scandium from Bauxite Residue.
    Mikeli E; Balomenos E; Panias D
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.
    Stoy L; Kulkarni Y; Huang CH
    Environ Sci Technol; 2022 Apr; 56(8):5150-5160. PubMed ID: 35380811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery.
    Zhang Y; Yan J; Xu J; Tian C; Matyjaszewski K; Tilton RD; Lowry GV
    Environ Sci Technol; 2021 Sep; 55(18):12549-12560. PubMed ID: 34464106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery and separation of rare earth elements using columns loaded with DNA-filter hybrid.
    Takahashi Y; Kondo K; Miyaji A; Umeo M; Honma T; Asaoka S
    Anal Sci; 2012; 28(10):985-92. PubMed ID: 23059995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A safer and cleaner process for recovering thorium and rare earth elements from radioactive waste residue.
    Su J; Gao Y; Ni S; Xu R; Sun X
    J Hazard Mater; 2021 Mar; 406():124654. PubMed ID: 33321319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems.
    Liu J; Bian D; Zheng Y; Chu X; Lin Y; Wang M; Lin Z; Li M; Zhang Y; Guan S
    Acta Biomater; 2020 Jan; 102():508-528. PubMed ID: 31722254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite Resins Impregnated by Phosphorus Organic Extractants for Separation of Rare Earth Elements from Nitrate-Based Leachate of Permanent Magnets.
    Kovalenko OV; Baulin VE; Shulga YM; Baulin DV; Gutsev GL; Tsivadze AY
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomining using microalgae to recover rare earth elements (REEs) from bauxite.
    Vo PHN; Kuzhiumparambil U; Kim M; Hinkley C; Pernice M; Nghiem LD; Ralph PJ
    Bioresour Technol; 2024 Jul; 406():131077. PubMed ID: 38971386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration of rare earth elements during high temperature pyrolysis of waste printed circuit boards.
    Khanna R; Ellamparuthy G; Cayumil R; Mishra SK; Mukherjee PS
    Waste Manag; 2018 Aug; 78():602-610. PubMed ID: 32559951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents.
    Pavón S; Fortuny A; Coll MT; Sastre AM
    Waste Manag; 2018 Dec; 82():241-248. PubMed ID: 30509586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the Use of 8-Hydroxyquinolines for the Facile Separation of Iron, Dysprosium and Neodymium.
    Melegari M; Neri M; Falco A; Tegoni M; Maffini M; Fornari F; Mucchino C; Artizzu F; Serpe A; Marchiò L
    ChemSusChem; 2024 May; ():e202400286. PubMed ID: 38786929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-transport and competitive retention of different ionic rare earth elements (REEs) in quartz sand: Effect of kaolinite.
    Wang Y; Wan Q; Liu B; Wei Z; Zhang M; Tang Y
    Sci Total Environ; 2020 Jun; 722():137779. PubMed ID: 32208243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.