BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35539531)

  • 1. Conducting polymer-coated MIL-101/S composite with scale-like shell structure for improving Li-S batteries.
    Jin WW; Li HJ; Zou JZ; Zeng SZ; Li QD; Xu GZ; Sheng HC; Wang BB; Si YH; Yu L; Zeng XR
    RSC Adv; 2018 Jan; 8(9):4786-4793. PubMed ID: 35539531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium-Sulfur Batteries.
    He F; Ye J; Cao Y; Xiao L; Yang H; Ai X
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11626-11633. PubMed ID: 28306233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIL-88A Metal-Organic Framework as a Stable Sulfur-host Cathode for Long-cycle Li-S Batteries.
    Benítez A; Amaro-Gahete J; Esquivel D; Romero-Salguero FJ; Morales J; Caballero Á
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32121149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carbon foam-supported high sulfur loading composite as a self-supported cathode for flexible lithium-sulfur batteries.
    Zhang M; Amin K; Cheng M; Yuan H; Mao L; Yan W; Wei Z
    Nanoscale; 2018 Nov; 10(46):21790-21797. PubMed ID: 30457148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer.
    Wu F; Liu J; Li L; Zhang X; Luo R; Ye Y; Chen R
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23095-104. PubMed ID: 27541695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries.
    Zhou W; Xiao X; Cai M; Yang L
    Nano Lett; 2014 Sep; 14(9):5250-6. PubMed ID: 25158077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries.
    Wang J; Yue K; Zhu X; Wang KL; Duan L
    Phys Chem Chem Phys; 2016 Jan; 18(1):261-6. PubMed ID: 26608624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional Electrocatalytic Cathodes Derived from Metal-Organic Frameworks for Advanced Lithium-Sulfur Batteries.
    Abdelkader AA; Rodene DD; Norouzi N; Alzharani A; Weeraratne KS; Gupta RB; El-Kaderi HM
    Chemistry; 2020 Nov; 26(61):13896-13903. PubMed ID: 32588456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium-Sulfur Batteries.
    Cheng Q; Yin Z; Pan S; Zhang G; Pan Z; Yu X; Fang Y; Rao H; Zhong X
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43844-43853. PubMed ID: 32897698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium-Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices.
    Xiao P; Bu F; Yang G; Zhang Y; Xu Y
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28856731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Ti
    Li J; Jin Q; Yin F; Zhu C; Zhang X; Zhang Z
    RSC Adv; 2020 Nov; 10(66):40276-40283. PubMed ID: 35520819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible and Hierarchically Structured Sulfur Composite Cathode Based on the Carbonized Textile for High-Performance Li-S Batteries.
    Gao P; Xu S; Chen Z; Huang X; Bao Z; Lao C; Wu G; Mei Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3938-3947. PubMed ID: 29309733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A liquid metal-based self-adaptive sulfur-gallium composite for long-cycling lithium-sulfur batteries.
    Zhu M; Li S; Li B; Yang S
    Nanoscale; 2019 Jan; 11(2):412-417. PubMed ID: 30543252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frogspawn inspired hollow Fe
    Zhang H; Cui H; Li J; Liu Y; Yang Y; Wang M
    Nanoscale; 2019 Nov; 11(44):21532-21541. PubMed ID: 31687731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-Shell-Structured Sulfur Cathode: Ultrathin δ-MnO
    Li Q; Ma Z; Li J; Liu Z; Fan L; Qin X; Shao G
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35049-35057. PubMed ID: 32667773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Core-Shell-Structured S@C@MnO
    Ni L; Zhao G; Yang G; Niu G; Chen M; Diao G
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34793-34803. PubMed ID: 28817251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Polypyrrole@Sulfur@Graphene Aerogel 3D Architecture via Advanced Vapor Polymerization for High-Performance Lithium-Sulfur Batteries.
    Tang H; You L; Liu J; Wang S; Wang P; Feng C; Guo Z
    ACS Appl Mater Interfaces; 2019 May; 11(20):18448-18455. PubMed ID: 31034201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO
    Lei T; Xie Y; Wang X; Miao S; Xiong J; Yan C
    Small; 2017 Oct; 13(37):. PubMed ID: 28748580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.