These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35539628)
41. High-Yield Production of Boron Nitride Nanosheets and Its Uses as a Catalyst Support for Hydrogenation of Nitroaromatics. Sun W; Meng Y; Fu Q; Wang F; Wang G; Gao W; Huang X; Lu F ACS Appl Mater Interfaces; 2016 Apr; 8(15):9881-8. PubMed ID: 27023711 [TBL] [Abstract][Full Text] [Related]
42. Palladium supported on chitosan as a recyclable and selective catalyst for the synthesis of 2-phenyl ethanol. Dabbawala AA; Sudheesh N; Bajaj HC Dalton Trans; 2012 Mar; 41(10):2910-7. PubMed ID: 22261791 [TBL] [Abstract][Full Text] [Related]
43. Highly effective bromate reduction by liquid phase catalytic hydrogenation over Pd catalysts supported on core-shell structured magnetites: Impact of shell properties. Li M; Zhou X; Sun J; Fu H; Qu X; Xu Z; Zheng S Sci Total Environ; 2019 May; 663():673-685. PubMed ID: 30731413 [TBL] [Abstract][Full Text] [Related]
44. Continuous Flow Reactor for the Controlled Synthesis and Inline Photocatalysis of Antibacterial Ag Prakash B; Katoch V; Shah A; Sharma M; Devi MM; Panda JJ; Sharma J; Ganguli AK Photochem Photobiol; 2020 Nov; 96(6):1273-1282. PubMed ID: 32535954 [TBL] [Abstract][Full Text] [Related]
45. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon. Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754 [TBL] [Abstract][Full Text] [Related]
46. Electrochemical degradation of pentachlorophenol on a palladium modified gas-diffusion electrode. Wang H; Wang JL Water Sci Technol; 2009; 59(9):1759-67. PubMed ID: 19448311 [TBL] [Abstract][Full Text] [Related]
47. Palladium nanoparticles decorated on amine functionalized graphene nanosheets as excellent nanocatalyst for the hydrogenation of nitrophenols to aminophenol counterparts. Soğukömeroğulları HG; Karataş Y; Celebi M; Gülcan M; Sönmez M; Zahmakiran M J Hazard Mater; 2019 May; 369():96-107. PubMed ID: 30776607 [TBL] [Abstract][Full Text] [Related]
48. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor. Munirathinam R; Ricciardi R; Egberink RJ; Huskens J; Holtkamp M; Wormeester H; Karst U; Verboom W Beilstein J Org Chem; 2013; 9():1698-704. PubMed ID: 24062830 [TBL] [Abstract][Full Text] [Related]
49. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption. Kandori K; Kuroda T; Togashi S; Katayama E J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543 [TBL] [Abstract][Full Text] [Related]
50. Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers. Paul R; Shit SC; Fovanna T; Ferri D; Srinivasa Rao B; Gunasooriya GTKK; Dao DQ; Le QV; Shown I; Sherburne MP; Trinh QT; Mondal J ACS Appl Mater Interfaces; 2020 Nov; 12(45):50550-50565. PubMed ID: 33111522 [TBL] [Abstract][Full Text] [Related]
51. Recent changes in patenting behavior in microprocess technology and its possible use for gas-liquid reactions and the oxidation of glucose. Dencic I; Hessel V; de Croon MH; Meuldijk J; van der Doelen CW; Koch K ChemSusChem; 2012 Feb; 5(2):232-45. PubMed ID: 22278780 [TBL] [Abstract][Full Text] [Related]
52. Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics. Basavaraju KC; Sharma S; Singh AK; Im DJ; Kim DP ChemSusChem; 2014 Jul; 7(7):1864-9. PubMed ID: 24828446 [TBL] [Abstract][Full Text] [Related]
53. Chemical Design of Palladium-Based Nanoarchitectures for Catalytic Applications. Iqbal M; Kaneti YV; Kim J; Yuliarto B; Kang YM; Bando Y; Sugahara Y; Yamauchi Y Small; 2019 Feb; 15(6):e1804378. PubMed ID: 30633438 [TBL] [Abstract][Full Text] [Related]
54. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders. Cappillino PJ; Sugar JD; El Gabaly F; Cai TY; Liu Z; Stickney JL; Robinson DB Langmuir; 2014 Apr; 30(16):4820-9. PubMed ID: 24738575 [TBL] [Abstract][Full Text] [Related]
55. In situ infrared monitoring of the solid/liquid catalyst interface during the three-phase hydrogenation of nitrobenzene over nanosized Au on TiO2. Richner G; van Bokhoven JA; Neuhold YM; Makosch M; Hungerbühler K Phys Chem Chem Phys; 2011 Jul; 13(27):12463-71. PubMed ID: 21660327 [TBL] [Abstract][Full Text] [Related]
56. Preparation of highly effective carbon black supported Pd-Pt bimetallic catalysts for nitrobenzene hydrogenation. Prekob Á; Muránszky G; Szőri M; Karacs G; Kristály F; Ferenczi T; Fiser B; Viskolcz B; Vanyorek L Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34252897 [TBL] [Abstract][Full Text] [Related]
57. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions. Gao S; Li W; Cao R J Colloid Interface Sci; 2015 Mar; 441():85-9. PubMed ID: 25490567 [TBL] [Abstract][Full Text] [Related]
58. Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. Bugaev AL; Guda AA; Lomachenko KA; Kamyshova EG; Soldatov MA; Kaur G; Øien-Ødegaard S; Braglia L; Lazzarini A; Manzoli M; Bordiga S; Olsbye U; Lillerud KP; Soldatov AV; Lamberti C Faraday Discuss; 2018 Sep; 208(0):287-306. PubMed ID: 29796547 [TBL] [Abstract][Full Text] [Related]
59. A colorimetric technique to characterize mass transfer during liquid-liquid slug flow in circular capillaries. Liu Y; Yao C; Yang L; Yang M; Chen G MethodsX; 2021; 8():101346. PubMed ID: 34434845 [TBL] [Abstract][Full Text] [Related]
60. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Javaid R; Kawasaki S; Suzuki A; Suzuki TM Beilstein J Org Chem; 2013; 9():1156-63. PubMed ID: 23843908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]