These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35539641)

  • 1. Cyclization of secondarily structured oligonucleotides to single-stranded rings by using
    Cui Y; Han X; An R; Zhou G; Komiyama M; Liang X
    RSC Adv; 2018 May; 8(34):18972-18979. PubMed ID: 35539641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stepwise Strategy for One-Pot Synthesis of Single-Stranded DNA Rings from Multiple Short Fragments.
    Sui Z; An R; Komiyama M; Liang X
    Chembiochem; 2021 Mar; 22(6):1005-1011. PubMed ID: 33124728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient preparation of single-stranded DNA rings by T4 ligase at abnormally low Mg(II) concentration.
    An R; Li Q; Fan Y; Li J; Pan X; Komiyama M; Liang X
    Nucleic Acids Res; 2017 Sep; 45(15):e139. PubMed ID: 28655200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal hairpin in oligonucleotide dominantly prioritizes intramolecular cyclization by T4 ligase over intermolecular polymerization: an exclusive methodology for producing ssDNA rings.
    Cui Y; Han X; An R; Zhang Y; Cheng K; Liang X; Komiyama M
    Nucleic Acids Res; 2018 Dec; 46(22):e132. PubMed ID: 30169701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Preparation of Large-Sized Rings of Single-Stranded DNA through One-Pot Ligation of Multiple Fragments.
    Sui Z; Liu M; Wang W; Chen H; Wang G; An R; Liang X; Komiyama M
    Chem Asian J; 2019 Oct; 14(19):3251-3254. PubMed ID: 31400067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA ligation of very small pseudo nick structures by T4 RNA ligase 2, leading to efficient production of versatile RNA rings.
    Cheng K; An R; Cui Y; Zhang Y; Han X; Sui Z; Chen H; Liang X; Komiyama M
    RSC Adv; 2019 Mar; 9(15):8620-8627. PubMed ID: 35518706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template-independent ligation of single-stranded DNA by T4 DNA ligase.
    Kuhn H; Frank-Kamenetskii MD
    FEBS J; 2005 Dec; 272(23):5991-6000. PubMed ID: 16302964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of topologically linked single-stranded DNA rings.
    Billen LP; Li Y
    Bioorg Chem; 2004 Dec; 32(6):582-98. PubMed ID: 15530998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mismatch selectivity of T4 DNA ligase far above the probe: Target duplex dissociation temperature.
    Osman EA; Alladin-Mustan BS; Hales SC; Matharu GK; Gibbs JM
    Biopolymers; 2021 Jan; 112(1):e23393. PubMed ID: 32896905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane.
    Li Q; Li J; Cui Y; Liu S; An R; Liang X; Komiyama M
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30189687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential production of RNA rings by T4 RNA ligase 2 without any splint through rational design of precursor strand.
    Chen H; Cheng K; Liu X; An R; Komiyama M; Liang X
    Nucleic Acids Res; 2020 May; 48(9):e54. PubMed ID: 32232357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of Taq polymerase with DNA at the polymerase active site.
    Eom SH; Wang J; Steitz TA
    Nature; 1996 Jul; 382(6588):278-81. PubMed ID: 8717047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient assembly of very short oligonucleotides using T4 DNA Ligase.
    Horspool DR; Coope RJ; Holt RA
    BMC Res Notes; 2010 Nov; 3():291. PubMed ID: 21062485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T4 ribonucleic acid ligase joins single-strand oligo(deoxyribonucleotides).
    McCoy MI; Gumport RI
    Biochemistry; 1980 Feb; 19(4):635-42. PubMed ID: 6986903
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Wang J; Zhu J; Wang C; Zhou G; Yu X; Fan H; An R; Komiyama M; Liang X
    Biochemistry; 2020 Feb; 59(4):400-406. PubMed ID: 31887028
    [No Abstract]   [Full Text] [Related]  

  • 16. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.
    Xu C; Maxwell BA; Suo Z
    J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programming CircLigase Catalysis for DNA Rings and Topologies.
    Li Q; Zhang S; Li W; Ge Z; Fan C; Gu H
    Anal Chem; 2021 Jan; 93(3):1801-1810. PubMed ID: 33382236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes.
    Mekler V; Minakhin L; Kuznedelov K; Mukhamedyarov D; Severinov K
    Nucleic Acids Res; 2012 Dec; 40(22):11352-62. PubMed ID: 23087380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concatemer chain reaction: a Taq DNA polymerase-mediated mechanism for generating long tandemly repetitive DNA sequences.
    White MJ; Fristensky BW; Thompson WF
    Anal Biochem; 1991 Dec; 199(2):184-90. PubMed ID: 1812783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perylene attached to 2'-amino-LNA: synthesis, incorporation into oligonucleotides, and remarkable fluorescence properties in vitro and in cell culture.
    Astakhova IV; Korshun VA; Jahn K; Kjems J; Wengel J
    Bioconjug Chem; 2008 Oct; 19(10):1995-2007. PubMed ID: 18771303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.