These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 35539666)

  • 21. Reference Correlations for the Thermal Conductivity of 13 Inorganic Molten Salts.
    Chliatzou CD; Assael MJ; Antoniadis KD; Huber ML; Wakeham WA
    J Phys Chem Ref Data; 2018; 47():. PubMed ID: 30983644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nano-Thermal Analysis of Defect-Induced Surface Pre-Melting in 2D Tellurium.
    Park DY; Yu HM; Jeong BG; An SJ; Kim SH; Jeong MS
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Salt Support Structures on Material Jetted Aluminum Parts.
    Kirchebner B; Ploetz M; Rehekampff C; Lechner P; Volk W
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Near-Wall Pebble Bed Thermal Conductivity for Energy Applications.
    Wada K; Eixenberger J; Stout D; Jaques BJ; Otanicar T; Estrada D
    ACS Omega; 2024 Jan; 9(1):1614-1619. PubMed ID: 38222600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of Contact Resistance of Thermal Interface Materials Used in Thermal Monitoring Systems of Electric Vehicle Charging Inlets.
    Pieszka-Łysoń M; Rutkowski P; Kawalec M; Kawalec D
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Electrical Conductivity Through the Bulk Doping of the Product of Titanocene Dichloride and 2-Nitro-1,4-phenylenediamine.
    Carraher CE; Battin AJ; Roner MR
    J Funct Biomater; 2011 Mar; 2(1):18-30. PubMed ID: 24956060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Yield Stress Obtained from the Fabrication of a Composite Material, Ti-MWCNTs/Al.
    López-Meléndez C; Ledezma-Sillas E; Lardizabal-Gutierrez D; Herrera-Ramirez JM; Carreño-Gallardo C
    Microsc Microanal; 2023 Jul; 29(Supplement_1):445-446. PubMed ID: 37613069
    [No Abstract]   [Full Text] [Related]  

  • 28. Impact of Selenium Doping in CdSeTe-based Solar Cells at the Atomic-scale.
    Thind AS; Farrell J; Klie RF
    Microsc Microanal; 2023 Jul; 29(Supplement_1):1784-1785. PubMed ID: 37613902
    [No Abstract]   [Full Text] [Related]  

  • 29. Insights into the specific heat capacity enhancement of ternary carbonate nanofluids with SiO
    Sang L; Ai W; Liu T; Wu Y; Ma C
    RSC Adv; 2019 Feb; 9(10):5288-5294. PubMed ID: 35515947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of Molten Nitrate Thermal Properties by Reduced Graphene Oxide and Graphene Quantum Dots.
    Hamdy E; Saad L; Abulfotuh F; Soliman M; Ebrahim S
    ACS Omega; 2020 Sep; 5(34):21345-21354. PubMed ID: 32905410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar Salt with Carbon Nanotubes as a Potential Phase Change Material for High-Temperature Applications: Investigations on Thermal Properties and Chemical Stability.
    Vigneshwaran P; Shaik S; Suresh S; Abbas M; Saleel CA; Cuce E
    ACS Omega; 2023 May; 8(20):17563-17572. PubMed ID: 37251134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review.
    Abir FM; Altwarah Q; Rana MT; Shin D
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Potential Environmental and Social Influence of the Inorganic Salt Hydrates Used as a Phase Change Material for Thermal Energy Storage in Solar Installations.
    Nartowska E; Styś-Maniara M; Kozłowski T
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP.
    Wu Y; Li J; Wang M; Wang H; Zhong Y; Zhao Y; Wei M; Li Y
    RSC Adv; 2018 May; 8(34):19251-19260. PubMed ID: 35539666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Wide-Working-Temperature NaNO
    Wang H; Li J; Zhong Y; Liu X; Wang M
    Molecules; 2024 May; 29(10):. PubMed ID: 38792189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melting Temperature Depression and Phase Transitions of Nitrate-Based Molten Salts in Nanoconfinement.
    Yazlak MG; Khan QA; Steinhart M; Duran H
    ACS Omega; 2022 Jul; 7(28):24669-24678. PubMed ID: 35874251
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.