These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35539669)

  • 1. Zein regulating apatite mineralization, degradability,
    Ru J; Wei Q; Yang L; Qin J; Tang L; Wei J; Guo L; Niu Y
    RSC Adv; 2018 May; 8(34):18745-18756. PubMed ID: 35539669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth.
    Zhang Y; Yu W; Ba Z; Cui S; Wei J; Li H
    Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite.
    Zhao Q; Tang H; Ren L; Wei J
    Int J Nanomedicine; 2020; 15():7279-7295. PubMed ID: 33061381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair.
    Wu Z; Zheng K; Zhang J; Tang T; Guo H; Boccaccini AR; Wei J
    J Mater Chem B; 2016 Dec; 4(48):7974-7988. PubMed ID: 32263787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds.
    Tang L; Wei W; Wang X; Qian J; Li J; He A; Yang L; Jiang X; Li X; Wei J
    RSC Adv; 2018 Mar; 8(20):10794-10805. PubMed ID: 35541558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocalcium-deficient hydroxyapatite-poly (e-caprolactone)-polyethylene glycol-poly (e-caprolactone) composite scaffolds.
    Wang Z; Li M; Yu B; Cao L; Yang Q; Su J
    Int J Nanomedicine; 2012; 7():3123-31. PubMed ID: 22848159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration.
    Niu Y; Guo L; Liu J; Shen H; Su J; An X; Yu B; Wei J; Shin JW; Guo H; Ji F; He D
    J Mater Chem B; 2015 Apr; 3(15):2962-2970. PubMed ID: 32262496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering.
    Tsai KY; Lin HY; Chen YW; Lin CY; Hsu TT; Kao CT
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(L-lactide) composite.
    Liu Z; Ji J; Tang S; Qian J; Yan Y; Yu B; Su J; Wei J
    J R Soc Interface; 2015 Oct; 12(111):20150507. PubMed ID: 26378120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite.
    He D; Dong W; Tang S; Wei J; Liu Z; Gu X; Li M; Guo H; Niu Y
    J Mater Sci Mater Med; 2014 Jun; 25(6):1415-24. PubMed ID: 24595904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate.
    Wu Z; Li Q; Pan Y; Yao Y; Tang S; Su J; Shin JW; Wei J; Zhao J
    Int J Nanomedicine; 2017; 12():3637-3651. PubMed ID: 28553104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration.
    Xia Y; Zhou P; Wang F; Qiu C; Wang P; Zhang Y; Zhao L; Xu S
    Int J Nanomedicine; 2016; 11():3435-49. PubMed ID: 27555766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-Printed PCL/Zn scaffolds for bone regeneration with a dose-dependent effect on osteogenesis and osteoclastogenesis.
    Wang S; Gu R; Wang F; Zhao X; Yang F; Xu Y; Yan F; Zhu Y; Xia D; Liu Y
    Mater Today Bio; 2022 Jan; 13():100202. PubMed ID: 35036897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites.
    Wang S; Gu Z; Wang Z; Chen X; Cao L; Cai L; Li Q; Wei J; Shin JW; Su J
    Sci Rep; 2018 Jan; 8(1):174. PubMed ID: 29317753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction].
    Li SY; Zhou M; Lai YX; Geng YM; Cao SS; Chen XM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):661-666. PubMed ID: 27806758
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.