These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35539699)

  • 1. Strain and screening effects on field emission properties of armchair graphene nanoribbon arrays: a first-principles study.
    Hu H; Loh SM; Leung TC; Lin MC
    RSC Adv; 2018 Jun; 8(40):22625-22634. PubMed ID: 35539699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening effects on the field enhancement factor of zigzag graphene nanoribbon arrays: a first-principles study.
    Hu H; Lin TC; Leung TC; Su WS
    Phys Chem Chem Phys; 2018 May; 20(21):14627-14634. PubMed ID: 29770396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion.
    Lindenthal S; Fazzi D; Zorn NF; El Yumin AA; Settele S; Weidinger B; Blasco E; Zaumseil J
    ACS Nano; 2023 Sep; 17(18):18240-18252. PubMed ID: 37695780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls.
    Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C
    ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of armchair graphene nanoribbons with array characteristics.
    Kuo DMT
    RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices.
    Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH
    Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap opening in graphene nanoribbons by application of simple shear strain and in-plane electric field.
    Bandeira NS; da Costa DR; Chaves A; Farias GA; Filho RNC
    J Phys Condens Matter; 2021 Feb; 33(6):065503. PubMed ID: 33108780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy.
    Deniz O; Sánchez-Sánchez C; Dumslaff T; Feng X; Narita A; Müllen K; Kharche N; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Apr; 17(4):2197-2203. PubMed ID: 28301723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.
    Ryou J; Park J; Kim G; Hong S
    J Phys Condens Matter; 2017 Jun; 29(24):245301. PubMed ID: 28443604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges.
    Vacacela Gomez C; Pisarra M; Gravina M; Sindona A
    Beilstein J Nanotechnol; 2017; 8():172-182. PubMed ID: 28243554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain.
    Kang ES; Ismail R
    Nanoscale Res Lett; 2014; 9(1):598. PubMed ID: 25404871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2018 Jan; 24(2):43. PubMed ID: 29352756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Width effects on bilayer graphene nanoribbon polarons.
    Logrado AL; Cassiano TSA; da Cunha WF; Gargano R; E Silva GM; de Oliveira Neto PH
    Phys Chem Chem Phys; 2024 May; 26(20):14948-14959. PubMed ID: 38739011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-Empirical Pseudopotential Method for Graphene and Graphene Nanoribbons.
    Paudel RK; Ren CY; Chang YC
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.