These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 35539709)

  • 1. Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS.
    Schreiber B; Gkogkou D; Dedelaite L; Kerbusch J; Hübner R; Sheremet E; Zahn DRT; Ramanavicius A; Facsko S; Rodriguez RD
    RSC Adv; 2018 Jun; 8(40):22569-22576. PubMed ID: 35539709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient SERS Substrates with Multiple Resonances for Analyte Screening: Fabrication and SERS Applications.
    Mukherjee A; Liu Q; Wackenhut F; Dai F; Fleischer M; Adam PM; Meixner AJ; Brecht M
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.
    Ten A; Lomonosov V; Boukouvala C; Ringe E
    ACS Nano; 2024 Jul; 18(28):18785-18799. PubMed ID: 38963330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S; Pathak A; Bok S; Chen B; Hamm SC; Mathai CJ; Guha S; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2017 Jan; 28(2):025302. PubMed ID: 27905323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative electron and photon excitation of localized surface plasmon resonance in lithographic gold arrays for enhanced Raman scattering.
    Zeng Y; Madsen SJ; Yankovich AB; Olsson E; Sinclair R
    Nanoscale; 2020 Dec; 12(46):23768-23779. PubMed ID: 33232431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Algorithm-Driven Surface-Enhanced Raman Spectroscopy Substrate Optimization.
    Bilgin B; Yanik C; Torun H; Onbasli MC
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules.
    Ionescu RE; Aybeke EN; Bourillot E; Lacroute Y; Lesniewska E; Adam PM; Bijeon JL
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28134754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates.
    Kim S; Yoo S; Nam DH; Kim H; Hafner JH; Lee S
    Nano Converg; 2024 Jul; 11(1):26. PubMed ID: 38965160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured plasmonic substrates for use as SERS sensors.
    Jeon TY; Kim DJ; Park SG; Kim SH; Kim DH
    Nano Converg; 2016; 3(1):18. PubMed ID: 28191428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots.
    Liu KK; Tadepalli S; Wang Z; Jiang Q; Singamaneni S
    Analyst; 2017 Nov; 142(23):4536-4543. PubMed ID: 29111555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates.
    Milekhin IA; Milekhin AG; Zahn DRT
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoS
    Ghopry SA; Sadeghi SM; Berrie CL; Wu JZ
    Biosensors (Basel); 2021 Nov; 11(12):. PubMed ID: 34940234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances.
    Khlebtsov BN; Burov AM; Zarkov SV; Khlebtsov NG
    Phys Chem Chem Phys; 2023 Nov; 25(45):30903-30913. PubMed ID: 37955312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings.
    Seçkin S; Singh P; Jaiswal A; König TAF
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43124-43134. PubMed ID: 37665350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled 3D Nanosplit Rings for Plasmon-Enhanced Optofluidic Sensing.
    Dai C; Lin Z; Agarwal K; Mikhael C; Aich A; Gupta K; Cho JH
    Nano Lett; 2020 Sep; 20(9):6697-6705. PubMed ID: 32808792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.