These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35540122)

  • 1. Blast furnace slag-Mg(OH)
    Walling SA; Bernal SA; Gardner LJ; Kinoshita H; Provis JL
    RSC Adv; 2018 Jun; 8(41):23101-23118. PubMed ID: 35540122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties and Microstructure of Na
    Xie L; Liu K
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Link between the Reactivity of Slag and the Strength Development of Calcium Aluminate Cement.
    Skočibušić Pejić J; Bašić AD; Grubor M; Serdar M
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase Evolution of Hybrid Alkali Sulfate-Activated Ground-Granulated Blast Furnace Slag Cements.
    Etcheverry JM; Yue Z; Krishnan S; Villagran-Zaccardi YA; Van den Heede P; Dhandapani Y; Bernal SA; De Belie N
    ACS Sustain Chem Eng; 2023 Dec; 11(49):17519-17531. PubMed ID: 38313417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars.
    Ke X; Bernal SA; Hussein OH; Provis JL
    Mater Struct; 2017; 50(6):252. PubMed ID: 31997917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.
    Shi C; Fernández-Jiménez A
    J Hazard Mater; 2006 Oct; 137(3):1656-63. PubMed ID: 16787699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Ca(OH)
    Dai X; Aydın S; Yardımcı MY; Lesage K; Schutter G
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration and Compressive Strength of Activated Blast-Furnace Slag-Steel Slag with Na
    Wang Y; Jiang B; Su Y; He X; Wang Y; Oh S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Innovative Method for Sustainable Utilization of Blast-Furnace Slag in the Cleaner Production of One-Part Hybrid Cement Mortar.
    Fayed EK; El-Hosiny FI; El-Kattan IM; Al-Kroom H; Abd Elrahman M; Abdel-Gawwad HA
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20-80 °C.
    Usherov-Marshak A; Vaičiukynienė D; Krivenko P; Bumanis G
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of ladle furnace slag containing heavy metals as a binding material in civil engineering.
    Xu B; Yi Y
    Sci Total Environ; 2020 Feb; 705():135854. PubMed ID: 31972921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-S-H Seeds Accelerate Early Age Hydration of Carbonate-Activated Slag and the Underlying Mechanism.
    Yuan B; Wang H; Jin D; Chen W
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pozzolanic reactivity of the synthetic slag from municipal solid waste incinerator cyclone ash and scrubber ash.
    Lin KL; Lin DF
    J Air Waste Manag Assoc; 2006 May; 56(5):569-74. PubMed ID: 16739792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Fineness and Chemical Composition of Blast Furnace Slag on Properties of Alkali-Activated Binder.
    Humad AM; Habermehl-Cwirzen K; Cwirzen A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Na
    Choi S; Lee KM
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration and strength development in blended cement with ultrafine granulated copper slag.
    Feng Y; Zhang Q; Chen Q; Wang D; Guo H; Liu L; Yang Q
    PLoS One; 2019; 14(4):e0215677. PubMed ID: 31026294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali-Activated Hybrid Cements Based on Fly Ash and Construction and Demolition Wastes Using Sodium Sulfate and Sodium Carbonate.
    Valencia-Saavedra W; Robayo-Salazar R; Mejía de Gutiérrez R
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag.
    Tole I; Rajczakowska M; Humad A; Kothari A; Cwirzen A
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32143319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Sodium Disilicate and Metasilicate on the Microstructure and Mechanical Properties of One-Part Alkali-Activated Copper Slag/Ground Granulated Blast Furnace Slag.
    Lemougna PN; Dilissen N; Hernandez GM; Kingne F; Gu J; Rahier H
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator.
    Yamazaki Y; Kim J; Kadoya K; Hama Y
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.