These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35540339)

  • 21. Advances in thermoelectric AgBiSe
    Jang H; Jung YS; Oh MW
    Heliyon; 2023 Nov; 9(11):e21117. PubMed ID: 37928035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors.
    Morelli DT; Jovovic V; Heremans JP
    Phys Rev Lett; 2008 Jul; 101(3):035901. PubMed ID: 18764265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doping-Induced Polymorph and Carrier Polarity Changes in Thermoelectric Ag(Bi,Sb)Se
    Sudo K; Goto Y; Sogabe R; Hoshi K; Miura A; Moriyoshi C; Kuroiwa Y; Mizuguchi Y
    Inorg Chem; 2019 Jun; 58(11):7628-7633. PubMed ID: 31074617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge
    Chen S; Bai H; Li J; Pan W; Jiang X; Li Z; Chen Z; Yan Y; Su X; Wu J; Uher C; Tang X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19664-19673. PubMed ID: 32255612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppressing Charged Cation Antisites via Se Vapor Annealing Enables p-Type Dopability in AgBiSe
    Jang H; Toriyama MY; Abbey S; Frimpong B; Male JP; Snyder GJ; Jung YS; Oh MW
    Adv Mater; 2022 Sep; 34(38):e2204132. PubMed ID: 35944565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance.
    Zheng Z; Su X; Deng R; Stoumpos C; Xie H; Liu W; Yan Y; Hao S; Uher C; Wolverton C; Kanatzidis MG; Tang X
    J Am Chem Soc; 2018 Feb; 140(7):2673-2686. PubMed ID: 29350916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance.
    Zhou M; Li JF; Kita T
    J Am Chem Soc; 2008 Apr; 130(13):4527-32. PubMed ID: 18327945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective Nonstoichiometric Strategy Combined Post-annealing Process for Boosting Thermoelectric Properties in n-Type PbTe.
    Jiang Z; Li E; Shi R; Feng B; Chen JL; Peng Y; Liu C; Miao L
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19048-19056. PubMed ID: 38578807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2.
    Cai S; Liu Z; Sun J; Li R; Fei W; Sui J
    Dalton Trans; 2015 Jan; 44(3):1046-51. PubMed ID: 25407495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aguilarite Ag
    Wang T; Zhao K; Qiu P; Song Q; Chen L; Shi X
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12632-12638. PubMed ID: 30908005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu
    Xie H; Hao S; Bailey TP; Cai S; Zhang Y; Slade TJ; Snyder GJ; Dravid VP; Uher C; Wolverton C; Kanatzidis MG
    J Am Chem Soc; 2021 Apr; 143(15):5978-5989. PubMed ID: 33847500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoelectric Performance of the 2D Bi
    Luo Y; Ma Z; Hao S; Cai S; Luo ZZ; Wolverton C; Dravid VP; Yang J; Yan Q; Kanatzidis MG
    J Am Chem Soc; 2022 Jan; 144(3):1445-1454. PubMed ID: 35029977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced Lattice Thermal Conductivity for Half-Heusler ZrNiSn through Cryogenic Mechanical Alloying.
    Bahrami A; Ying P; Wolff U; Rodríguez NP; Schierning G; Nielsch K; He R
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38561-38568. PubMed ID: 34351145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting Thermoelectric Properties of AgBi
    Wu Y; Su X; Yang D; Zhang Q; Tang X
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4185-4191. PubMed ID: 33433997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb
    An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical Synthesis of Iron Antimonide (FeSb2) and Its Thermoelectric Properties.
    Saleemi M; Tafti MY; Jacquot A; Jägle M; Johnsson M; Toprak MS
    Inorg Chem; 2016 Feb; 55(4):1831-6. PubMed ID: 26836130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Achieving Enhanced Thermoelectric Performance in (SnTe)
    Liu X; Zhang B; Chen Y; Wu H; Wang H; Yang M; Wang G; Xu J; Zhou X; Han G
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44805-44814. PubMed ID: 32902958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reducing Lattice Thermal Conductivity of MnTe by Se Alloying toward High Thermoelectric Performance.
    Dong J; Sun FH; Tang H; Hayashi K; Li H; Shang PP; Miyazaki Y; Li JF
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28221-28227. PubMed ID: 31305979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe
    Luo Y; Hao S; Cai S; Slade TJ; Luo ZZ; Dravid VP; Wolverton C; Yan Q; Kanatzidis MG
    J Am Chem Soc; 2020 Sep; 142(35):15187-15198. PubMed ID: 32786784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering electrical transport in α-MgAgSb to realize high performances near room temperature.
    Lei J; Zhang D; Guan W; Cheng Z; Wang C; Wang Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16729-16735. PubMed ID: 29881852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.