These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35540500)
1. A simple synthesis of transparent and highly conducting p-type Cu Dai X; Lei H; Chen C; Guo Y; Fang G RSC Adv; 2018 May; 8(30):16887-16896. PubMed ID: 35540500 [TBL] [Abstract][Full Text] [Related]
2. A Low Temperature Growth of Cu Pellegrino AL; Lo Presti F; Smecca E; Valastro S; Greco G; Di Franco S; Roccaforte F; Alberti A; Malandrino G Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363379 [TBL] [Abstract][Full Text] [Related]
4. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. Xu X; Bullock J; Schelhas LT; Stutz EZ; Fonseca JJ; Hettick M; Pool VL; Tai KF; Toney MF; Fang X; Javey A; Wong LH; Ager JW Nano Lett; 2016 Mar; 16(3):1925-32. PubMed ID: 26855162 [TBL] [Abstract][Full Text] [Related]
5. Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications. Firat YE; Yildirim H; Erturk K; Peksoz A Scanning; 2017; 2017():2625132. PubMed ID: 29109807 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of simple, low cost and benign sol-gel Cu Sui Y; Wu Y; Zhang Y; Wang F; Gao Y; Lv S; Wang Z; Sun Y; Wei M; Yao B; Yang L RSC Adv; 2018 Feb; 8(17):9038-9048. PubMed ID: 35541828 [TBL] [Abstract][Full Text] [Related]
7. Thermal Analysis of Metal-Organic Precursors for Functional Cu:ΝiOx Hole Transporting Layer in Inverted Perovskite Solar Cells: Role of Solution Combustion Chemistry in Cu:ΝiOx Thin Films Processing. Ioakeimidis A; Papadas IT; Koutsouroubi ED; Armatas GS; Choulis SA Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835837 [TBL] [Abstract][Full Text] [Related]
8. Yttrium Doped Copper (II) Oxide Hole Transport Material as Efficient Thin Film Transistor. Baig S; Kumar P; Ngai J; Li Y; Ahmed S Chemphyschem; 2020 May; 21(9):895-907. PubMed ID: 32107838 [TBL] [Abstract][Full Text] [Related]
9. Efficient non-fullerene organic solar cells employing aqueous solution-processed MoO Li Y; Li P; Qu M; Liu F; Wei B; Chen G Nanotechnology; 2023 May; 34(28):. PubMed ID: 37059082 [TBL] [Abstract][Full Text] [Related]
10. HTL-Free Sb Lu Y; Li K; Yang X; Lu S; Li S; Zheng J; Fu L; Chen C; Tang J ACS Appl Mater Interfaces; 2021 Oct; 13(39):46858-46865. PubMed ID: 34553903 [TBL] [Abstract][Full Text] [Related]
11. Chemically processed CdTe thin films for potential applications in solar cells - Effect of Cu doping. Butt AF; Azhar M; Yousaf H; Batoo KM; Khan D; Noman M; Chaudhry MU; Naseem S; Riaz S Heliyon; 2024 Feb; 10(3):e24492. PubMed ID: 38333808 [TBL] [Abstract][Full Text] [Related]
12. Novel Boron-Doped p-Type Cu K Markose K; Shaji M; Bhatia S; Nair PR; Saji KJ; Antony A; Jayaraj MK ACS Appl Mater Interfaces; 2020 Mar; 12(11):12972-12981. PubMed ID: 32083458 [TBL] [Abstract][Full Text] [Related]
13. Flexibility of Room-Temperature-Synthesized Amorphous CdO-In Wang Y; Li M; Fan B; Wong YS; Lo CY; Kwok CKG; Shil SK; Yip HL; Jen AK; Tsang SW; Yu KM ACS Appl Mater Interfaces; 2021 Sep; 13(36):43795-43805. PubMed ID: 34464077 [TBL] [Abstract][Full Text] [Related]
14. Prediction and realisation of high mobility and degenerate p-type conductivity in CaCuP thin films. Willis J; Bravić I; Schnepf RR; Heinselman KN; Monserrat B; Unold T; Zakutayev A; Scanlon DO; Crovetto A Chem Sci; 2022 May; 13(20):5872-5883. PubMed ID: 35685803 [TBL] [Abstract][Full Text] [Related]
15. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition. Otelaja OO; Ha DH; Ly T; Zhang H; Robinson RD ACS Appl Mater Interfaces; 2014 Nov; 6(21):18911-20. PubMed ID: 25314692 [TBL] [Abstract][Full Text] [Related]
16. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy. Suja M; Bashar SB; Morshed MM; Liu J ACS Appl Mater Interfaces; 2015 Apr; 7(16):8894-9. PubMed ID: 25835032 [TBL] [Abstract][Full Text] [Related]
17. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Seo S; Park IJ; Kim M; Lee S; Bae C; Jung HS; Park NG; Kim JY; Shin H Nanoscale; 2016 Jun; 8(22):11403-12. PubMed ID: 27216291 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional Fischer Aminocarbene Complexes as Hole or Electron Transporting Layers in Organic Solar Cells. Vidal-García P; Sánchez-Vergara ME; Corona-Sánchez R; Jiménez-Sandoval O; Mercado EG; Toscano RA; Álvarez-Toledano C Molecules; 2018 Mar; 23(4):. PubMed ID: 29587345 [TBL] [Abstract][Full Text] [Related]
19. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying. Yang Y; Kang X; Huang L; Pan D ACS Appl Mater Interfaces; 2016 Mar; 8(8):5308-13. PubMed ID: 26837657 [TBL] [Abstract][Full Text] [Related]
20. The impact of thickness-related grain boundary migration on hole concentration and mobility of p-type transparent conducting CuI films. Xue R; Gao G; Yang L; Xu L; Zhang Y; Zhu J RSC Adv; 2024 Mar; 14(13):9072-9079. PubMed ID: 38500616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]