These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 35540556)

  • 1. Magnetic stirring in syringe dispersive liquid-liquid microextraction as an effective method for preconcentration of tartrazine dye from food samples: A multivariate analysis approach.
    Mohammadzadeh A; Amiri M
    Heliyon; 2024 Mar; 10(5):e27611. PubMed ID: 38495191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-based deep eutectic solvents followed by GFAAS for the speciation of As(III), As(V), total inorganic arsenic and total arsenic in rice samples.
    Fattahi N; Ahmed HL; Nematifar Z; Hashemi N; Moradi M; Soltani S; Akbari S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2024 Jun; 41(6):617-628. PubMed ID: 38669467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flow-batch lab-in-syringe foam microextraction platform for the simultaneous preconcentration and in situ membraneless gas-liquid separation of mercury prior to cold vapor atomic absorption spectrometry.
    Manousi N; Anthemidis AN
    Anal Chim Acta; 2024 Feb; 1290():342208. PubMed ID: 38246743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuous flow polyurethane foam solid phase microextraction lab-in-syringe platform for the automatic determination of toxic metals.
    Manousi N; Anthemidis A
    Talanta; 2024 Mar; 269():125492. PubMed ID: 38042142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-syringe low-density solvent dispersive liquid-liquid microextraction of Pd(II) from acidic solutions resulting from hydrometallurgical treatments and quantification by ICP-OES.
    Mortada WI; Azooz EA; Hassanien MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123462. PubMed ID: 37806244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shipboard determination of arsenite and total dissolved inorganic arsenic in estuarine and coastal waters with an automated on-site-applicable atomic fluorescence spectrometer.
    Bo G; Fang T; Chen L; Gong Z; Ma J
    Talanta; 2024 Jan; 266(Pt 2):125082. PubMed ID: 37595527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The automated lab of tomorrow.
    Adam D
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2406320121. PubMed ID: 38630717
    [No Abstract]   [Full Text] [Related]  

  • 8. Arsenic speciation by using emerging sample preparation techniques: a review.
    Jagirani MS; Soylak M
    Turk J Chem; 2023; 47(5):991-1006. PubMed ID: 38173749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of sensitive and accurate solid-phase microextraction procedure for preconcentration of As(III) ions in real samples.
    Elik A; Tuzen M; Hazer B; Kaya S; Katin KP; Altunay N
    Sci Rep; 2021 Mar; 11(1):5481. PubMed ID: 33750835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Automation Technique Lab-In-Syringe: A Practical Guide.
    Horstkotte B; Solich P
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.
    Shamsipur M; Fattahi N; Assadi Y; Sadeghi M; Sharafi K
    Talanta; 2014 Dec; 130():26-32. PubMed ID: 25159375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages.
    Frizzarin RM; Maya F; Estela JM; Cerdà V
    Food Chem; 2016 Dec; 212():759-67. PubMed ID: 27374593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-syringe dispersive liquid-liquid microextraction.
    Lemos VA; Barreto JA; Santos LB; de Assis RDS; Novaes CG; Cassella RJ
    Talanta; 2022 Feb; 238(Pt 1):123002. PubMed ID: 34857335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully-automated magnetic stirring-assisted lab-in-syringe dispersive liquid-liquid microextraction for the determination of arsenic species in rice samples.
    Wang X; Xu G; Chen P; Sun Y; Yao X; Lv Y; Guo W; Wang G
    RSC Adv; 2018 May; 8(30):16858-16865. PubMed ID: 35540556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages.
    Wang X; Wu L; Cao J; Hong X; Ye R; Chen W; Yuan T
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1190-9. PubMed ID: 27181611
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.