These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35540603)

  • 21. High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons.
    Yu J; Fu N; Zhao J; Liu R; Li F; Du Y; Yang Z
    ACS Omega; 2019 Oct; 4(14):15904-15911. PubMed ID: 31592460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of Network-Structured Carbon Nanofiber Mats Based on PAN Blends Using Electrospinning and Hot-Pressing Methods for Supercapacitor Applications.
    Ma MJ; Seong JG; Radhakrishnan S; Ko TH; Kim BS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries.
    Liu J; Tang K; Song K; van Aken PA; Yu Y; Maier J
    Phys Chem Chem Phys; 2013 Dec; 15(48):20813-8. PubMed ID: 24202186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.
    Mohamed SG; Chen CJ; Chen CK; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22701-8. PubMed ID: 25437918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A high-power lithium-ion hybrid capacitor based on a hollow N-doped carbon nanobox anode and its porous analogue cathode.
    Liang T; Wang H; Fei R; Wang R; He B; Gong Y; Yan C
    Nanoscale; 2019 Nov; 11(43):20715-20724. PubMed ID: 31642836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y; Tang Z
    Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyimide-derived carbon nanofiber membranes as free-standing anodes for lithium-ion batteries.
    Xu H; Yin C; Hou X; Gong M; Yang C; Xu L; Luo J; Ma L; Zhou L; Li X
    RSC Adv; 2022 Aug; 12(34):21904-21915. PubMed ID: 36043084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries.
    Liu Y; Zhang N; Yu C; Jiao L; Chen J
    Nano Lett; 2016 May; 16(5):3321-8. PubMed ID: 27050390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrogen-enriched carbon nanofibers with tunable semi-ionic CF bonds as a stable long cycle anode for sodium-ion batteries.
    Yan X; Liang S; Shi H; Hu Y; Liu L; Xu Z
    J Colloid Interface Sci; 2021 Feb; 583():535-543. PubMed ID: 33035792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors.
    Manikandan R; Raj CJ; Moulton SE; Todorov TS; Yu KH; Kim BC
    Chemistry; 2021 Jan; 27(2):669-682. PubMed ID: 32700787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aqueous supercapacitors based on carbonized silk electrodes.
    Zhang L; Meng Z; Qi Q; Yan W; Lin N; Liu XY
    RSC Adv; 2018 Jun; 8(39):22146-22153. PubMed ID: 35541726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The electrochemical storage mechanism of an In
    Yuan Y; Yang M; Liu L; Xia J; Yan H; Liu J; Wen J; Zhang Y; Wang X
    Nanoscale; 2020 Oct; 12(39):20337-20346. PubMed ID: 33006354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries.
    Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C
    Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen and oxygen Co-doped porous carbon derived from yam waste for high-performance supercapacitors.
    Li Z; Liu Q; Sun L; Li N; Wang X; Wang Q; Zhang D; Wang B
    RSC Adv; 2021 Oct; 11(53):33208-33218. PubMed ID: 35497555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.
    Yang Y; Jin S; Zhang Z; Du Z; Liu H; Yang J; Xu H; Ji H
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14180-14186. PubMed ID: 28387517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bimetallic CoMoS Composite Anchored to Biocarbon Fibers as a High-Capacity Anode for Li-Ion Batteries.
    Dominguez N; Torres B; Barrera LA; Rincon JE; Lin Y; Chianelli RR; Ahsan MA; Noveron JC
    ACS Omega; 2018 Aug; 3(8):10243-10249. PubMed ID: 31459153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun Carbon Nanofiber/Boron Nitride Composites as Flexible Anodes for Lithium-Ion Batteries.
    Chen M; Zhang S; Zhang J; Chen Q
    J Nanosci Nanotechnol; 2019 Jan; 19(1):220-225. PubMed ID: 30327026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries.
    Wen T; Wu XL; Zhang S; Wang X; Xu AW
    Chem Asian J; 2015 Mar; 10(3):595-601. PubMed ID: 25663599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomass-Based Carbon Nanofibers Prepared by Electrospinning for Supercapacitor.
    Zhang YQ; Shi GF; Chen B; Wang GY; Guo TC
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5731-5737. PubMed ID: 29458633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.
    Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.