These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 35540767)
1. Near infrared dye loaded copper sulfide-apoferritin for tumor imaging and photothermal therapy. He Y; Shen Y; Zhou S; Wu Y; Yuan Z; Wei C; Gui L; Chen Y; Gu Y; Chen H RSC Adv; 2018 Apr; 8(26):14268-14279. PubMed ID: 35540767 [TBL] [Abstract][Full Text] [Related]
2. Thermosensitive drug-loading system based on copper sulfide nanoparticles for combined photothermal therapy and chemotherapy in vivo. Yuan Z; Qu S; He Y; Xu Y; Liang L; Zhou X; Gui L; Gu Y; Chen H Biomater Sci; 2018 Nov; 6(12):3219-3230. PubMed ID: 30255863 [TBL] [Abstract][Full Text] [Related]
3. Biocompatible tumor-targeting nanocomposites based on CuS for tumor imaging and photothermal therapy. Liang L; Peng S; Yuan Z; Wei C; He Y; Zheng J; Gu Y; Chen H RSC Adv; 2018 Feb; 8(11):6013-6026. PubMed ID: 35539596 [TBL] [Abstract][Full Text] [Related]
4. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Chen Q; Wang C; Zhan Z; He W; Cheng Z; Li Y; Liu Z Biomaterials; 2014 Sep; 35(28):8206-14. PubMed ID: 24957292 [TBL] [Abstract][Full Text] [Related]
5. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. Zhang C; Sun W; Wang Y; Xu F; Qu J; Xia J; Shen M; Shi X ACS Appl Mater Interfaces; 2020 Feb; 12(8):9107-9117. PubMed ID: 32003962 [TBL] [Abstract][Full Text] [Related]
6. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Shi H; Yan R; Wu L; Sun Y; Liu S; Zhou Z; He J; Ye D Acta Biomater; 2018 May; 72():256-265. PubMed ID: 29588255 [TBL] [Abstract][Full Text] [Related]
7. Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. Yang W; Guo W; Le W; Lv G; Zhang F; Shi L; Wang X; Wang J; Wang S; Chang J; Zhang B ACS Nano; 2016 Nov; 10(11):10245-10257. PubMed ID: 27791364 [TBL] [Abstract][Full Text] [Related]
8. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer. Niu S; Zhang X; Williams GR; Wu J; Gao F; Fu Z; Chen X; Lu S; Zhu LM Acta Biomater; 2021 May; 126():408-420. PubMed ID: 33731303 [TBL] [Abstract][Full Text] [Related]
9. Chitosan Functionalized CuS Nanoparticles Boots Gene Transfection via Photothermal Effect. Lin L; Li X; Yang Y; Jing L; Yue X; Chen X; Dai Z Curr Drug Deliv; 2017; 14(3):334-341. PubMed ID: 26743353 [TBL] [Abstract][Full Text] [Related]
10. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287 [TBL] [Abstract][Full Text] [Related]
11. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo. Peng S; He Y; Er M; Sheng Y; Gu Y; Chen H Biomater Sci; 2017 Feb; 5(3):475-484. PubMed ID: 28078340 [TBL] [Abstract][Full Text] [Related]
12. Precision Nanomedicine Using Dual PET and MR Temperature Imaging-Guided Photothermal Therapy. Zhou M; Melancon M; Stafford RJ; Li J; Nick AM; Tian M; Sood AK; Li C J Nucl Med; 2016 Nov; 57(11):1778-1783. PubMed ID: 27283932 [TBL] [Abstract][Full Text] [Related]
13. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Li Y; Lu W; Huang Q; Huang M; Li C; Chen W Nanomedicine (Lond); 2010 Oct; 5(8):1161-71. PubMed ID: 21039194 [TBL] [Abstract][Full Text] [Related]
14. Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent. Wu C; Zhu A; Li D; Wang L; Yang H; Zeng H; Liu Y Expert Opin Drug Deliv; 2016; 13(1):155-65. PubMed ID: 26559178 [TBL] [Abstract][Full Text] [Related]
15. Transforming Commercial Copper Sulfide into Injectable Hydrogels for Local Photothermal Therapy. Wang X; Yang Z; Meng Z; Sun SK Gels; 2022 May; 8(5):. PubMed ID: 35621617 [TBL] [Abstract][Full Text] [Related]
16. In Situ Growth Strategy to Integrate Up-Conversion Nanoparticles with Ultrasmall CuS for Photothermal Theranostics. Lv R; Yang P; Hu B; Xu J; Shang W; Tian J ACS Nano; 2017 Jan; 11(1):1064-1072. PubMed ID: 27960062 [TBL] [Abstract][Full Text] [Related]
17. Antifouling Dendrimer-Entrapped Copper Sulfide Nanoparticles Enable Photoacoustic Imaging-Guided Targeted Combination Therapy of Tumors and Tumor Metastasis. Ouyang Z; Li D; Xiong Z; Song C; Gao Y; Liu R; Shen M; Shi X ACS Appl Mater Interfaces; 2021 Feb; 13(5):6069-6080. PubMed ID: 33501834 [TBL] [Abstract][Full Text] [Related]
18. Second near-infrared photoactivatable nanomedicines for enhanced photothermal-chemodynamic therapy of cancer. Wu S; Liu C; Li W; Zhang C; Chen D; Xu C; Su L; Wang X J Mater Chem B; 2023 Mar; 11(11):2455-2465. PubMed ID: 36810638 [TBL] [Abstract][Full Text] [Related]
19. Cetuximab-modified CuS nanoparticles integrating near-infrared-II-responsive photothermal therapy and anti-vessel treatment. Li B; Jiang Z; Xie D; Wang Y; Lao X Int J Nanomedicine; 2018; 13():7289-7302. PubMed ID: 30510418 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Liu X; Li B; Fu F; Xu K; Zou R; Wang Q; Zhang B; Chen Z; Hu J Dalton Trans; 2014 Aug; 43(30):11709-15. PubMed ID: 24950757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]