These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35540883)

  • 1. Double-exponential refractive index sensitivity of metal-semiconductor core-shell nanoparticles: the effects of dual-plasmon resonances and red-shift.
    Zhang H; Cao P; Dou J; Cheng L; Niu T; Zhang G
    RSC Adv; 2018 Jan; 8(3):1700-1705. PubMed ID: 35540883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New hybridization coupling mechanism and enhanced sensitivity in a Cu
    Cao P; Liang M; Wu Y; Li Y; Cheng L
    Nanotechnology; 2020 Sep; 31(36):365501. PubMed ID: 32443000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling Resonances of Surface Plasmon in Gold Nanorod/Copper Chalcogenide Core-Shell Nanostructures and Their Enhanced Photothermal Effect.
    Li Y; Pan G; Liu Q; Ma L; Xie Y; Zhou L; Hao Z; Wang Q
    Chemphyschem; 2018 Jun; ():. PubMed ID: 29863808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-sensitivity refractive index of Au@Cu
    Cao P; Chen H; Zhang H; Cheng L; Niu T
    RSC Adv; 2018 Oct; 8(61):35005-35013. PubMed ID: 35547074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures.
    Chahinez D; Reji T; Andreas R
    RSC Adv; 2018 May; 8(35):19616-19626. PubMed ID: 35540971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Considerable Upconversion Enhancement Induced by Cu2-xS Plasmon Nanoparticles.
    Zhou D; Liu D; Xu W; Yin Z; Chen X; Zhou P; Cui S; Chen Z; Song H
    ACS Nano; 2016 May; 10(5):5169-79. PubMed ID: 27149281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.
    Chaffin EA; Bhana S; O'Connor RT; Huang X; Wang Y
    J Phys Chem B; 2014 Dec; 118(49):14076-84. PubMed ID: 25010347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material.
    Sugawa K; Tahara H; Yamashita A; Otsuki J; Sagara T; Harumoto T; Yanagida S
    ACS Nano; 2015 Feb; 9(2):1895-904. PubMed ID: 25629586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing.
    Loiseau A; Zhang L; Hu D; Salmain M; Mazouzi Y; Flack R; Liedberg B; Boujday S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46462-46471. PubMed ID: 31744295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Mode Infrared Absorption by Segregating Dopants within Plasmonic Semiconductor Nanocrystals.
    Gibbs SL; Dean C; Saad J; Tandon B; Staller CM; Agrawal A; Milliron DJ
    Nano Lett; 2020 Oct; 20(10):7498-7505. PubMed ID: 32959661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode Hybridization in Silicon Core-Gold Shell Nanosphere.
    Sugimoto H; Hinamoto T; Kazuoka Y; Assadillayev A; Raza S; Fujii M
    Small; 2022 Nov; 18(45):e2204890. PubMed ID: 36156856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced optical responses of Au@Pd core/shell nanobars.
    Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S
    Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPd
    Xie Y; Chen W; Bertoni G; Kriegel I; Xiong M; Li N; Prato M; Riedinger A; Sathya A; Manna L
    Chem Mater; 2017 Feb; 29(4):1716-1723. PubMed ID: 28413257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators.
    Li Z; Sun R; Zhang C; Wan M; Gu P; Shen Q; Chen Z; Wang Z
    Opt Express; 2016 Aug; 24(17):19895-904. PubMed ID: 27557265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates.
    Jia S; Bian C; Sun J; Tong J; Xia S
    Biosens Bioelectron; 2018 Aug; 114():15-21. PubMed ID: 29775854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The optical property of core-shell nanosensors and detection of atrazine based on localized surface plasmon resonance (LSPR) sensing.
    Yang S; Wu T; Zhao X; Li X; Tan W
    Sensors (Basel); 2014 Jul; 14(7):13273-84. PubMed ID: 25057137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors.
    Lin L; Zheng Y
    Nanoscale; 2015 Jul; 7(28):12205-14. PubMed ID: 26133011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial Dopant Placement for Tuning Plasmonic Properties in Metal Oxide Nanocrystals.
    Crockett BM; Jansons AW; Koskela KM; Johnson DW; Hutchison JE
    ACS Nano; 2017 Aug; 11(8):7719-7728. PubMed ID: 28718619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.