These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 35540895)
1. Amphoteric starch derivatives as reusable flocculant for heavy-metal removal. Wu L; Zhang X; Chen L; Zhang H; Li C; Lv Y; Xu Y; Jia X; Shi Y; Guo X RSC Adv; 2018 Jan; 8(3):1274-1280. PubMed ID: 35540895 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. Wang K; Ran T; Yu P; Chen L; Zhao J; Ahmad A; Ramzan N; Xu X; Xu Y; Shi Y Environ Res; 2021 Oct; 201():111489. PubMed ID: 34166665 [TBL] [Abstract][Full Text] [Related]
3. Residue-Free and Recyclable Starch-Based Flocculants for Dye Wastewater Flocculation. Gao Z; Ju B; Tang B; Ma W; Niu W; Zhang S Langmuir; 2024 Feb; 40(6):3231-3240. PubMed ID: 38297996 [TBL] [Abstract][Full Text] [Related]
4. Application of a modified biological flocculant in total nitrogen treatment of leather wastewater. Zhang Y; Yang Q; Gao H; Zhao Y; Tang X; Zhao C; Fang C Water Sci Technol; 2021 Jun; 83(12):2901-2910. PubMed ID: 34185687 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal removal from aqueous solutions by chitosan-based magnetic composite flocculants. Xiao X; Yu Y; Sun Y; Zheng X; Chen A J Environ Sci (China); 2021 Oct; 108():22-32. PubMed ID: 34465434 [TBL] [Abstract][Full Text] [Related]
6. Chelating stability of an amphoteric chelating polymer flocculant with Cu(II), Pb(II), Cd(II), and Ni(II). Liu L; Li Y; Liu X; Zhou Z; Ling Y Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():765-75. PubMed ID: 24144830 [TBL] [Abstract][Full Text] [Related]
7. Separation and Sequential Recovery of Tetracycline and Cu(II) from Water Using Reusable Thermoresponsive Chitosan-Based Flocculant. Ren K; Du H; Yang Z; Tian Z; Zhang X; Yang W; Chen J ACS Appl Mater Interfaces; 2017 Mar; 9(11):10266-10275. PubMed ID: 28240859 [TBL] [Abstract][Full Text] [Related]
8. Removal of multiple heavy metal ions using a macromolecule chelating flocculant xanthated chitosan. Yang K; Wang G; Liu F; Wang X; Chen X Water Sci Technol; 2019 Jun; 79(12):2289-2297. PubMed ID: 31411583 [TBL] [Abstract][Full Text] [Related]
9. Preparation, investigation of metal ion removal and flocculation performances of grafted hydroxyethyl starch. Kolya H; Tripathy T Int J Biol Macromol; 2013 Nov; 62():557-64. PubMed ID: 24076205 [TBL] [Abstract][Full Text] [Related]
10. Removing heavy metals from polluted surface water with a tannin-based flocculant agent. Beltrán Heredia J; Sánchez Martín J J Hazard Mater; 2009 Jun; 165(1-3):1215-8. PubMed ID: 19008042 [TBL] [Abstract][Full Text] [Related]
11. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance. Huang M; Liu Z; Li A; Yang H J Environ Manage; 2017 Jul; 196():63-71. PubMed ID: 28284139 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater. Du Q; Wei H; Li A; Yang H Sci Total Environ; 2017 Dec; 601-602():1628-1637. PubMed ID: 28609850 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Wu H; Liu Z; Yang H; Li A Water Res; 2016 Jun; 96():126-35. PubMed ID: 27038383 [TBL] [Abstract][Full Text] [Related]
14. Green Synthesis of Reusable Adsorbents for the Removal of Heavy Metal Ions. Dharmapriya TN; Li D; Chung YC; Huang PJ ACS Omega; 2021 Nov; 6(45):30478-30487. PubMed ID: 34805677 [TBL] [Abstract][Full Text] [Related]
15. The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution. Yang L; Wen T; Wang L; Miki T; Bai H; Lu X; Yu H; Nagasaka T J Environ Manage; 2019 Feb; 231():41-48. PubMed ID: 30326337 [TBL] [Abstract][Full Text] [Related]
16. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance. Xiang B; Fan W; Yi X; Wang Z; Gao F; Li Y; Gu H Carbohydr Polym; 2016 Jan; 136():30-7. PubMed ID: 26572325 [TBL] [Abstract][Full Text] [Related]
17. Low-pressure UV-initiated synthesis of cationic starch-based flocculant with high flocculation performance. Wu Y; Jiang X; Ma J; Wen J; Liu S; Liu H; Zheng H Carbohydr Polym; 2021 Dec; 273():118379. PubMed ID: 34560931 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, flocculation and adsorption performance of amphoteric starch. Lin Q; Qian S; Li C; Pan H; Wu Z; Liu G Carbohydr Polym; 2012 Sep; 90(1):275-83. PubMed ID: 24751041 [TBL] [Abstract][Full Text] [Related]
19. Machine learning for the prediction of heavy metal removal by chitosan-based flocculants. Lu C; Xu Z; Dong B; Zhang Y; Wang M; Zeng Y; Zhang C Carbohydr Polym; 2022 Jun; 285():119240. PubMed ID: 35287862 [TBL] [Abstract][Full Text] [Related]
20. Amphoteric amylopectin: a novel polymeric flocculant. Singh RP; Pal S; Rana VK; Ghorai S Carbohydr Polym; 2013 Jan; 91(1):294-9. PubMed ID: 23044135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]