These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35540901)

  • 1. Aggregation of catalytically active Ru nanoparticles to inactive bulk, monitored
    Hitrik M; Sasson Y
    RSC Adv; 2018 Jan; 8(3):1481-1492. PubMed ID: 35540901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(eta 6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation.
    Widegren JA; Bennett MA; Finke RG
    J Am Chem Soc; 2003 Aug; 125(34):10301-10. PubMed ID: 12926954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bis(allyl)-ruthenium(IV) complexes as highly efficient catalysts for the redox isomerization of allylic alcohols into carbonyl compounds in organic and aqueous media: scope, limitations, and theoretical analysis of the mechanism.
    Cadierno V; García-Garrido SE; Gimeno J; Varela-Alvarez A; Sordo JA
    J Am Chem Soc; 2006 Feb; 128(4):1360-70. PubMed ID: 16433556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions.
    Yamaguchi K; Koike T; Kotani M; Matsushita M; Shinachi S; Mizuno N
    Chemistry; 2005 Nov; 11(22):6574-82. PubMed ID: 16092142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.
    Prasai B; Ren Y; Shan S; Zhao Y; Cronk H; Luo J; Zhong CJ; Petkov V
    Nanoscale; 2015 May; 7(17):8122-34. PubMed ID: 25874741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and Mechanistic Insight into the Surfactant-Induced Aggregation of Gold Nanoparticles and Their Catalytic Efficacy: Importance of Surface Restructuring.
    Saini B; Khamari L; Mukherjee TK
    J Phys Chem B; 2022 Mar; 126(10):2130-2141. PubMed ID: 35254808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.
    Zahmakiran M; Ayvalı T; Philippot K
    Langmuir; 2012 Mar; 28(11):4908-14. PubMed ID: 22356554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ru-Catalyzed Estragole Isomerization under Homogeneous and Ionic Liquid Biphasic Conditions.
    Leal BC; Aydos GL; Netz PA; Dupont J
    ACS Omega; 2017 Mar; 2(3):1146-1155. PubMed ID: 28393133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Pd/Ru Bimetallic Nanoparticles by
    Gomez-Bolivar J; Mikheenko IP; Orozco RL; Sharma S; Banerjee D; Walker M; Hand RA; Merroun ML; Macaskie LE
    Front Microbiol; 2019; 10():1276. PubMed ID: 31281292
    [No Abstract]   [Full Text] [Related]  

  • 11. Defect-assisted electronic metal-support interactions: tuning the interplay between Ru nanoparticles and CuO supports for pH-neutral oxygen evolution.
    Porkovich AJ; Kumar P; Ziadi Z; Lloyd DC; Weng L; Jian N; Sasaki T; Sowwan M; Datta A
    Nanoscale; 2021 Jan; 13(1):71-80. PubMed ID: 33350421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Synthesis of Magnetically Recoverable Pd and Ru Catalysts for 4-Nitrophenol Reduction: Identifying Key Factors.
    Gregor L; Reilly AK; Dickstein TA; Mazhar S; Bram S; Morgan DG; Losovyj Y; Pink M; Stein BD; Matveeva VG; Bronstein LM
    ACS Omega; 2018 Nov; 3(11):14717-14725. PubMed ID: 31458148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium(IV)-catalyzed isomerization of the C=C bond of o-allylic substrates: a theoretical and experimental study.
    Varela-Álvarez A; Sordo JA; Piedra E; Nebra N; Cadierno V; Gimeno J
    Chemistry; 2011 Sep; 17(38):10583-99. PubMed ID: 21850724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Triggered Boost of Activity of Catalytic Bola-Type Surfactants by a Plasmonic Metal-Support Interaction Effect.
    Sutter S; Trepka B; Siroky S; Hagedorn K; Theiß S; Baum P; Polarz S
    ACS Appl Mater Interfaces; 2019 May; 11(17):15936-15944. PubMed ID: 30950261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface chemistry on small ruthenium nanoparticles: evidence for site selective reactions and influence of ligands.
    Novio F; Monahan D; Coppel Y; Antorrena G; Lecante P; Philippot K; Chaudret B
    Chemistry; 2014 Jan; 20(5):1287-97. PubMed ID: 24458912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation control of Ru and Ir nanoparticles by tunable aryl alkyl imidazolium ionic liquids.
    Schmolke L; Lerch S; Bülow M; Siebels M; Schmitz A; Thomas J; Dehm G; Held C; Strassner T; Janiak C
    Nanoscale; 2019 Mar; 11(9):4073-4082. PubMed ID: 30778483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-Dependent Growth and Stabilization Mechanisms of Surfactant-Free Colloidal Pt Nanoparticles.
    Quinson J; Neumann S; Kacenauskaite L; Bucher J; Kirkensgaard JJK; Simonsen SB; Theil Kuhn L; Zana A; Vosch T; Oezaslan M; Kunz S; Arenz M
    Chemistry; 2020 Jul; 26(41):9012-9023. PubMed ID: 32428349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upconversion of Cellulosic Waste Into a Potential "Drop in Fuel" via Novel Catalyst Generated Using
    Mikheenko IP; Gomez-Bolivar J; Merroun ML; Macaskie LE; Sharma S; Walker M; Hand RA; Grail BM; Johnson DB; Orozco RL
    Front Microbiol; 2019; 10():970. PubMed ID: 31134018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan as capping agent in a robust one-pot procedure for a magnetic catalyst synthesis.
    Dickstein TA; Zhou E; Hershberger KK; Haskell AK; Morgan DG; Pink M; Stein BD; Nikoshvili LZ; Matveeva VG; Bronstein LM
    Carbohydr Polym; 2021 Oct; 269():118267. PubMed ID: 34294299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.