These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35540903)

  • 1. Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization.
    Zhang XF; Wang B; Yu J; Wu XN; Zang YH; Gao HC; Su PC; Hao SQ
    RSC Adv; 2018 Jan; 8(3):1159-1167. PubMed ID: 35540903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water.
    Feng C; Chen YA; Yu CP; Hou CH
    Chemosphere; 2018 Oct; 208():285-293. PubMed ID: 29883863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Removal of Chromium(VI) Using a Novel Waste Biomass Chestnut Shell-Based Carbon Electrode by Electrosorption.
    Zhang X; Ren B; Wu X; Yan X; Sun Y; Gao H; Qu F
    ACS Omega; 2021 Oct; 6(39):25389-25396. PubMed ID: 34632197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.
    Hou CH; Liu NL; Hsi HC
    Chemosphere; 2015 Dec; 141():71-9. PubMed ID: 26135977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe
    Bharath G; Rambabu K; Banat F; Hai A; Arangadi AF; Ponpandian N
    Sci Total Environ; 2019 Nov; 691():713-726. PubMed ID: 31325869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.
    Ma CY; Huang SC; Chou PH; Den W; Hou CH
    Chemosphere; 2016 Mar; 146():113-20. PubMed ID: 26714293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization.
    Wang Z; Yan T; Shi L; Zhang D
    ACS Appl Mater Interfaces; 2017 May; 9(17):15068-15078. PubMed ID: 28418233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization.
    Zhang W; Jin C; Shi Z; Zhu L; Chen L; Liu Y; Zhang H
    Chemosphere; 2022 Mar; 291(Pt 3):133113. PubMed ID: 34856237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional cubic ordered mesoporous carbon with chitosan for capacitive deionization disinfection of water.
    Cao C; Wu X; Zheng Y; Chen Y
    Environ Sci Pollut Res Int; 2020 May; 27(13):15001-15010. PubMed ID: 32067173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacitive deionization of high concentrations of hexavalent chromium using nickel-ferric-layered double hydroxide/molybdenum disulfide asymmetric electrode.
    Yang D; Li X; Li Y; Song W; Yan T; Cui Y; Yan L
    J Colloid Interface Sci; 2023 Mar; 634():793-803. PubMed ID: 36565621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Electrochemical Stability of a Zwitterionic-Polymer-Functionalized Electrode for Capacitive Deionization.
    Jung Y; Yang Y; Kim T; Shin HS; Hong S; Cha S; Kwon S
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6207-6217. PubMed ID: 29384362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of polyvinylidene fluoride-derived porous carbon heterostructure with inserted carbon nanotube via phase-inversion coupled with annealing for capacitive deionization application.
    Li Y; Qi J; Zhang W; Zhang M; Li J
    J Colloid Interface Sci; 2019 Oct; 554():353-361. PubMed ID: 31310877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the Structure of Chitosan-Based Porous Carbon Nanofiber Architectures toward Efficient Capacitive Charge Storage and Capacitive Deionization.
    Szabó L; Xu X; Uto K; Henzie J; Yamauchi Y; Ichinose I; Ebara M
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4004-4021. PubMed ID: 35029967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid treated RHWBAC electrode performance for Cr(VI) removal by capacitive deionization and CFD analysis study.
    Gaikwad MS; Balomajumder C; Tiwari AK
    Chemosphere; 2020 Sep; 254():126781. PubMed ID: 32335438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency Enhancement of Electro-Adsorption Desalination Using Iron Oxide Nanoparticle-Incorporated Activated Carbon Nanocomposite.
    Yasin AS; Mohamed AY; Kim D; Yoon S; Ra H; Lee K
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-assisted adsorption of Cs(I) and Co(II) from aqueous solution by capacitive deionization with activated carbon cloth/graphene oxide composite electrode.
    Liu X; Wang J
    Sci Total Environ; 2020 Dec; 749():141524. PubMed ID: 32836125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creating 3D Hierarchical Carbon Architectures with Micro-, Meso-, and Macropores via a Simple Self-Blowing Strategy for a Flow-through Deionization Capacitor.
    Zhao S; Yan T; Wang H; Zhang J; Shi L; Zhang D
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18027-35. PubMed ID: 27352100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capacitive removal of Pb ions via electrosorption on novel willow biochar-manganese dioxide composites.
    Mer K; Egiebor NO; Tao W; Sajjadi B; Wijethunga UK; Leem G
    Environ Technol; 2024 Feb; 45(5):999-1012. PubMed ID: 36215094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Pseudo-Capacitance Process in Nanoarchitectural Layered Double Hydroxide Nanoarrays Hollow Nanocages for Improved Capacitive Deionization Performance.
    Wei D; Cao Y; Yan L; Gang H; Wu B; Ouyang B; Chen P; Jiang Y; Wang H
    ACS Appl Mater Interfaces; 2023 May; 15(20):24427-24436. PubMed ID: 37171395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.