BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35540920)

  • 21. Nondestructive Classification of Maize Moldy Seeds by Hyperspectral Imaging and Optimal Machine Learning Algorithms.
    Hu Y; Wang Z; Li X; Li L; Wang X; Wei Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyperspectral imaging combined with CNN for maize variety identification.
    Zhang F; Zhang F; Wang S; Li L; Lv Q; Fu S; Wang X; Lv Q; Zhang Y
    Front Plant Sci; 2023; 14():1254548. PubMed ID: 37746016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms.
    Yang H; Wang C; Zhang H; Zhou Y; Luo B
    PeerJ Comput Sci; 2023; 9():e1354. PubMed ID: 37346683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Maize seed identification using hyperspectral imaging and SVDD algorithm].
    Zhu QB; Feng ZL; Huang M; Zhu X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):517-21. PubMed ID: 23697145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Study on method of maize hybrid purity identification based on hyperspectral image technology].
    Jia SQ; Liu Z; Li SM; Li L; Ma Q; Zhang XD; Zhu DH; Yan YL; An D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Oct; 33(10):2847-52. PubMed ID: 24409748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid identification of the variety of maize seeds based on near-infrared spectroscopy coupled with locally linear embedding.
    Liu S; Chen Z; Jiao F
    Appl Opt; 2022 Mar; 61(7):1704-1710. PubMed ID: 35297847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperspectral Image-Based Variety Classification of Waxy Maize Seeds by the t-SNE Model and Procrustes Analysis.
    Miao A; Zhuang J; Tang Y; He Y; Chu X; Luo S
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30545028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discrimination of
    Wu N; Zhang C; Bai X; Du X; He Y
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30384477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM.
    Yang J; Sun L; Xing W; Feng G; Bai H; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119585. PubMed ID: 33662700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics.
    Zhang C; Shen T; Liu F; He Y
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29301228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection.
    Zhou Q; Huang W; Liang D; Tian X
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of different varieties of sesame oil using near-infrared hyperspectral imaging and chemometrics algorithms.
    Xie C; Wang Q; He Y
    PLoS One; 2014; 9(5):e98522. PubMed ID: 24879306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Fast Identification of Transgenic Soybean Varieties Based Near Infrared Hyperspectral Imaging Technology].
    Wang HL; Yang XD; Zhang C; Guo DQ; Bao YD; He Y; Liu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1843-7. PubMed ID: 30052403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HyperSeed: An End-to-End Method to Process Hyperspectral Images of Seeds.
    Gao T; Chandran AKN; Paul P; Walia H; Yu H
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of Hyperspectral Imaging to Detect Sclerotinia sclerotiorum on Oilseed Rape Stems.
    Kong W; Zhang C; Huang W; Liu F; He Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29300315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning.
    Tu K; Wen S; Cheng Y; Xu Y; Pan T; Hou H; Gu R; Wang J; Wang F; Sun Q
    Plant Methods; 2022 Jun; 18(1):81. PubMed ID: 35690826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-destructive detection of single-seed viability in maize using hyperspectral imaging technology and multi-scale 3D convolutional neural network.
    Fan Y; An T; Wang Q; Yang G; Huang W; Wang Z; Zhao C; Tian X
    Front Plant Sci; 2023; 14():1248598. PubMed ID: 37711294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of peanut seed vigor based on hyperspectral imaging and chemometrics.
    Zou Z; Chen J; Wu W; Luo J; Long T; Wu Q; Wang Q; Zhen J; Zhao Y; Wang Y; Chen Y; Zhou M; Xu L
    Front Plant Sci; 2023; 14():1127108. PubMed ID: 36923124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral and Image Integrated Analysis of Hyperspectral Data for Waxy Corn Seed Variety Classification.
    Yang X; Hong H; You Z; Cheng F
    Sensors (Basel); 2015 Jul; 15(7):15578-94. PubMed ID: 26140347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discrimination of CRISPR/Cas9-induced mutants of rice seeds using near-infrared hyperspectral imaging.
    Feng X; Peng C; Chen Y; Liu X; Feng X; He Y
    Sci Rep; 2017 Nov; 7(1):15934. PubMed ID: 29162881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.