These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35540972)

  • 41. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation.
    Chen G; Xu Q; Yang Y; Li C; Huang T; Sun G; Zhang S; Ma D; Li X
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23538-44. PubMed ID: 26455260
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intercalation of Copper Phthalocyanine Within Bulk Graphite as a New Strategy Toward the Synthesis of CuO-Based CO Oxidation Catalysts.
    Couvret G; Genay G; Robert C; Michel L; Caps V
    Front Chem; 2020; 8():735. PubMed ID: 33110908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insights into the role of strontium in catalytic combustion of toluene over La
    Liu M; Yang X; Tian Z; Wang H; Yin L; Chen J; Guan Q; Yang H; Zhang Q
    Phys Chem Chem Phys; 2022 Feb; 24(6):3686-3694. PubMed ID: 35080221
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.
    Zhu X; Tu X; Mei D; Zheng C; Zhou J; Gao X; Luo Z; Ni M; Cen K
    Chemosphere; 2016 Jul; 155():9-17. PubMed ID: 27093635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-Propagated Flaming Synthesis of Highly Active Layered CuO-δ-MnO
    Li L; Luo J; Liu Y; Jing F; Su D; Chu W
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21798-21808. PubMed ID: 28589715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bi-functional Ag-Cu
    Verma A; Kumar S; Chang WK; Fu YP
    Dalton Trans; 2020 Jan; 49(3):625-637. PubMed ID: 31859301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic Oxidation of Ammonia over Cerium-Modified Copper Aluminium Zinc Mixed Oxides.
    Górecka S; Pacultová K; Fridrichová D; Górecki K; Bílková T; Žebrák R; Obalová L
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decorating of Ag and CuO on Cu Nanoparticles for Enhanced High Catalytic Activity to the Degradation of Organic Pollutants.
    Liang Y; Chen Z; Yao W; Wang P; Yu S; Wang X
    Langmuir; 2017 Aug; 33(31):7606-7614. PubMed ID: 28723097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tuning the surface reactivity of oxides by peroxide species.
    Zhu Y; Wang J; Patel SB; Li C; Head AR; Boscoboinik JA; Zhou G
    Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2215189120. PubMed ID: 36943886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supported binary CuO
    Kiritoshi S; Iwasa T; Araki K; Kawabata Y; Taketsugu T; Hinokuma S; Machida M
    RSC Adv; 2018 Dec; 8(72):41491-41498. PubMed ID: 35559310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Doping effect of transition metals (Zr, Mn, Ti and Ni) on well-shaped CuO/CeO
    Guo X; Qiu Z; Mao J; Zhou R
    Phys Chem Chem Phys; 2018 Oct; 20(40):25983-25994. PubMed ID: 30298155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mesoporous Cu-Ce-O
    Li R; Yang Y; Sun N; Kuai L
    Chemistry; 2019 Dec; 25(68):15586-15593. PubMed ID: 31574171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Catalytic degradation of naphthalene by CuO (-CeO2)/Al2O3].
    Zha J; Zhou HC; He DL; Shan L; Zhang L; Xie J
    Huan Jing Ke Xue; 2014 Oct; 35(10):3984-90. PubMed ID: 25693411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2.
    Liu Z; Amiridis MD; Chen Y
    J Phys Chem B; 2005 Jan; 109(3):1251-5. PubMed ID: 16851088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of Nanohybrid Spinel@CuO Catalysts for Propane Oxidation: Modified Spinel and Enhanced Activity by Temperature-Dependent Acid Sites.
    Wang B; Yang G; Yang Q; Li B; Wang D; Peng Y; Li J; Lu C; Crittenden J
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27106-27118. PubMed ID: 34097390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene.
    Xie S; Dai H; Deng J; Liu Y; Yang H; Jiang Y; Tan W; Ao A; Guo G
    Nanoscale; 2013 Nov; 5(22):11207-19. PubMed ID: 24080987
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy.
    Li D; Yu Q; Li SS; Wan HQ; Liu LJ; Qi L; Liu B; Gao F; Dong L; Chen Y
    Chemistry; 2011 May; 17(20):5668-79. PubMed ID: 21688407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization.
    Bai Y; Zhang W; Zhang Z; Zhou J; Wang X; Wang C; Huang W; Jiang J; Xiong Y
    J Am Chem Soc; 2014 Oct; 136(42):14650-3. PubMed ID: 25296380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.