These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell. Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():646-54. PubMed ID: 24513712 [TBL] [Abstract][Full Text] [Related]
25. Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():232-8. PubMed ID: 24866090 [TBL] [Abstract][Full Text] [Related]
26. First-principles study of Carbz-PAHTDDT dye sensitizer and two Carbz-derived dyes for dye sensitized solar cells. Mohammadi N; Wang F J Mol Model; 2014 Mar; 20(3):2177. PubMed ID: 24595721 [TBL] [Abstract][Full Text] [Related]
27. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells. Baheti A; Justin Thomas KR; Li CT; Lee CP; Ho KC ACS Appl Mater Interfaces; 2015 Feb; 7(4):2249-62. PubMed ID: 25557120 [TBL] [Abstract][Full Text] [Related]
28. A detailed experimental and theoretical investigation of the role of cyano groups in the π-bridged acceptor of sensitizers for use in dye-sensitized solar cells (DSCs). Xu Q; Yang G; Ren Y; Lu F; Zhang N; Qamar M; Yang M; Zhang B; Feng Y Phys Chem Chem Phys; 2017 Nov; 19(42):28867-28875. PubMed ID: 29057410 [TBL] [Abstract][Full Text] [Related]
29. Screening the influence of methoxy and anisyl groups to perylene based sensitizers for dye-sensitized solar cell applications: a computational approach. Nicksonsebastin D; Pounraj P; Mani N; Selvapandiyan M; Prasath M J Mol Model; 2022 Nov; 28(11):373. PubMed ID: 36322186 [TBL] [Abstract][Full Text] [Related]
30. Interaction of YD2 and TiO₂ in dye-sensitized solar cells (DSSCs): a density functional theory study. Mendizabal F; Lopéz A; Arratia-Pérez R; Inostroza N; Linares-Flores C J Mol Model; 2015 Sep; 21(9):226. PubMed ID: 26267296 [TBL] [Abstract][Full Text] [Related]
31. N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. Luo J; Xu M; Li R; Huang KW; Jiang C; Qi Q; Zeng W; Zhang J; Chi C; Wang P; Wu J J Am Chem Soc; 2014 Jan; 136(1):265-72. PubMed ID: 24345083 [TBL] [Abstract][Full Text] [Related]
32. Theoretical screening of -NH2-, -OH-, -CH3-, -F-, and -SH-substituted porphyrins as sensitizer candidates for dye-sensitized solar cells. Ma R; Guo P; Yang L; Guo L; Zhang X; Nazeeruddin MK; Grätzel M J Phys Chem A; 2010 Feb; 114(4):1973-9. PubMed ID: 20067227 [TBL] [Abstract][Full Text] [Related]
33. Theoretical investigations on the unsymmetrical effect of β-link Zn-porphyrin sensitizers on the performance for dye-sensitized solar cells. Xie M; Bai FQ; Wang J; Zheng YQ; Lin Z Phys Chem Chem Phys; 2018 Jan; 20(5):3741-3751. PubMed ID: 29345699 [TBL] [Abstract][Full Text] [Related]
34. Theoretical analysis of the absorption spectrum, electronic structure, excitation, and intramolecular electron transfer of D-A'-π-A porphyrin dyes for dye-sensitized solar cells. Xu Z; Gao S; Lu X; Li Y; Li Y; Wei S Phys Chem Chem Phys; 2020 Jul; 22(26):14846-14856. PubMed ID: 32579631 [TBL] [Abstract][Full Text] [Related]
35. Designing new quinoline-based organic photosensitizers for dye-sensitized solar cells (DSSC): a theoretical investigation. Dos Santos GC; Oliveira EF; Lavarda FC; da Silva-Filho LC J Mol Model; 2019 Feb; 25(3):75. PubMed ID: 30798441 [TBL] [Abstract][Full Text] [Related]
36. Tropolone as a High-Performance Robust Anchoring Group for Dye-Sensitized Solar Cells. Higashino T; Fujimori Y; Sugiura K; Tsuji Y; Ito S; Imahori H Angew Chem Int Ed Engl; 2015 Jul; 54(31):9052-6. PubMed ID: 26080034 [TBL] [Abstract][Full Text] [Related]
37. Systematic Investigations on the Roles of the Electron Acceptor and Neighboring Ethynylene Moiety in Porphyrins for Dye-Sensitized Solar Cells. Wei T; Sun X; Li X; Ågren H; Xie Y ACS Appl Mater Interfaces; 2015 Oct; 7(39):21956-65. PubMed ID: 26355437 [TBL] [Abstract][Full Text] [Related]
38. Molecular design of benzo[c][1,2,5]thiadiazole or thieno[3,4-d]pyridazine-based auxiliary acceptors through different anchoring groups in D-π-A-A framework: A DFT/TD-DFT study. Marlina LA; Haryadi W; Daengngern R; Pranowo HD J Mol Graph Model; 2022 Jun; 113():108148. PubMed ID: 35180574 [TBL] [Abstract][Full Text] [Related]
39. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Yella A; Lee HW; Tsao HN; Yi C; Chandiran AK; Nazeeruddin MK; Diau EW; Yeh CY; Zakeeruddin SM; Grätzel M Science; 2011 Nov; 334(6056):629-34. PubMed ID: 22053043 [TBL] [Abstract][Full Text] [Related]
40. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study. Tavangar Z; Zareie N Spectrochim Acta A Mol Biomol Spectrosc; 2016 Oct; 167():72-77. PubMed ID: 27258685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]