These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35541069)

  • 1. Self-assembly of peptide amphiphiles by vapor pressure osmometry and dissipative particle dynamics.
    Seki T; Arai N; Suh D; Ozawa T; Shimada T; Yasuoka K; Hotta A
    RSC Adv; 2018 Jul; 8(47):26461-26468. PubMed ID: 35541069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks.
    Fisusi FA; Notman R; Granger LA; Malkinson JP; Schatzlein AG; Uchegbu IF
    Pharm Nanotechnol; 2017; 5(3):215-219. PubMed ID: 28847269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations of peptide amphiphiles.
    Manandhar A; Kang M; Chakraborty K; Tang PK; Loverde SM
    Org Biomol Chem; 2017 Oct; 15(38):7993-8005. PubMed ID: 28853474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly and polymerization of diacetylene-containing peptide amphiphiles in aqueous solution.
    van den Heuvel M; Löwik DW; van Hest JC
    Biomacromolecules; 2008 Oct; 9(10):2727-34. PubMed ID: 18785773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces.
    Liao HS; Lin J; Liu Y; Huang P; Jin A; Chen X
    Nanoscale; 2016 Aug; 8(31):14814-20. PubMed ID: 27447093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments.
    Kang M; Cui H; Loverde SM
    Soft Matter; 2017 Nov; 13(42):7721-7730. PubMed ID: 28905963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics.
    Lee OS; Cho V; Schatz GC
    Nano Lett; 2012 Sep; 12(9):4907-13. PubMed ID: 22924639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments.
    Sasselli IR; Syrgiannis Z; Sather NA; Palmer LC; Stupp SI
    J Phys Chem B; 2022 Jan; 126(3):650-659. PubMed ID: 35029997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics.
    Mayoral E; Goicochea AG
    J Chem Phys; 2013 Mar; 138(9):094703. PubMed ID: 23485318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication of a supra-amphiphile for dissipative self-assembly.
    Wang G; Tang B; Liu Y; Gao Q; Wang Z; Zhang X
    Chem Sci; 2016 Feb; 7(2):1151-1155. PubMed ID: 29910871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of hydrophobicity on self-assembly by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Langmuir; 2014 Jul; 30(26):7745-54. PubMed ID: 24915982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of model DNA-binding peptide amphiphiles.
    Bitton R; Schmidt J; Biesalski M; Tu R; Tirrell M; Bianco-Peled H
    Langmuir; 2005 Dec; 21(25):11888-95. PubMed ID: 16316129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures.
    Albert SK; Golla M; Krishnan N; Perumal D; Varghese R
    Acc Chem Res; 2020 Nov; 53(11):2668-2679. PubMed ID: 33052654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Nguyen HD
    Langmuir; 2015; 31(1):315-24. PubMed ID: 25488898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Engineering of Alkylated, Fluorinated, and Mixed Amphiphiles.
    Rashmi R; Hasheminejad H; Herziger S; Mirzaalipour A; Singh AK; Netz RR; Böttcher C; Makki H; Sharma SK; Haag R
    Macromol Rapid Commun; 2022 Apr; 43(8):e2100914. PubMed ID: 35239224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
    Manandhar A; Chakraborty K; Tang PK; Kang M; Zhang P; Cui H; Loverde SM
    J Phys Chem B; 2019 Dec; 123(50):10582-10593. PubMed ID: 31749360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of amphiphilic peptide (AF)6H5K15: coarse-grained molecular dynamics simulation.
    Thota N; Luo Z; Hu Z; Jiang J
    J Phys Chem B; 2013 Aug; 117(33):9690-8. PubMed ID: 23927837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.
    Deshmukh SA; Solomon LA; Kamath G; Fry HC; Sankaranarayanan SK
    Nat Commun; 2016 Aug; 7():12367. PubMed ID: 27554944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.