BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35541160)

  • 21. The effect of co-pyrolysis temperature for iron-biochar composites on their adsorption behavior of antimonite and antimonate in aqueous solution.
    Zhang L; Dong Y; Liu J; Liu C; Liu W; Lin H
    Bioresour Technol; 2022 Mar; 347():126362. PubMed ID: 34838625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of novel MoS
    Khan ZH; Gao M; Qiu W; Song Z
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34979-34989. PubMed ID: 33661497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ preparation of a multifunctional adsorbent by optimizing the Fe
    Li Q; Liao L; Xu R; Wu Z; Yin Z; Han Y; Zhang Y; Yang Y; Jiang T
    J Hazard Mater; 2023 Feb; 444(Pt A):130389. PubMed ID: 36402108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nigella sativa seed based nanocomposite-MnO
    Siddiqui SI; Manzoor O; Mohsin M; Chaudhry SA
    Environ Res; 2019 Apr; 171():328-340. PubMed ID: 30711734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cysteine chemical modification for surface regulation of biochar and its application for polymetallic adsorption from aqueous solutions.
    Li B; Gong J; Fang J; Zheng Z; Fan W
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):1061-1071. PubMed ID: 32827120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient removal of Cd(II) by phosphate-modified biochars derived from apple tree branches: Processes, mechanisms, and application.
    Wang Q; Duan CJ; Xu CY; Geng ZC
    Sci Total Environ; 2022 May; 819():152876. PubMed ID: 34998767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles.
    Xiong C; Wang W; Tan F; Luo F; Chen J; Qiao X
    J Hazard Mater; 2015 Dec; 299():664-74. PubMed ID: 26280371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced adsorption of Cd(II) from aqueous solution by a magnesium oxide-rice husk biochar composite.
    Xiang J; Lin Q; Cheng S; Guo J; Yao X; Liu Q; Yin G; Liu D
    Environ Sci Pollut Res Int; 2018 May; 25(14):14032-14042. PubMed ID: 29520542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis on the mechanism of Cd
    Yin G; Tao L; Chen X; Bolan NS; Sarkar B; Lin Q; Wang H
    J Hazard Mater; 2021 Oct; 420():126487. PubMed ID: 34252654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.
    Ma Z; Zhao D; Chang Y; Xing S; Wu Y; Gao Y
    Dalton Trans; 2013 Oct; 42(39):14261-7. PubMed ID: 23945878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb
    Shi Q; Zhang H; Shahab A; Zeng H; Zeng H; Bacha AU; Nabi I; Siddique J; Ullah H
    Ecotoxicol Environ Saf; 2021 Sep; 221():112426. PubMed ID: 34166940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil.
    Xiang J; Lin Q; Yao X; Yin G
    Environ Res; 2021 Apr; 195():110650. PubMed ID: 33587947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective mitigation of single-component and mixed textile dyes from aqueous media using recyclable graphene-based nanocomposite.
    Tran TV; Vo DN; Nguyen DTC; Ching YC; Nguyen NT; Nguyen QT
    Environ Sci Pollut Res Int; 2022 May; 29(21):32120-32141. PubMed ID: 35013974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides.
    Tan WT; Zhou H; Tang SF; Zeng P; Gu JF; Liao BH
    Environ Pollut; 2022 May; 300():118899. PubMed ID: 35085653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid silica aerogel nanocomposite adsorbents designed for Cd(II) removal from aqueous solution.
    Shariatinia Z; Esmaeilzadeh A
    Water Environ Res; 2019 Dec; 91(12):1624-1637. PubMed ID: 31206828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media.
    Ahmadi A; Foroutan R; Esmaeili H; Tamjidi S
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):14044-14057. PubMed ID: 32036528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient removal arsenate from water by biochar-loaded Ce
    Wang Y; Chen X; Yan J; Wang T; Xie X; Yang S
    Sci Total Environ; 2021 Nov; 794():148691. PubMed ID: 34214812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution.
    Ma F; Zhao B; Diao J
    Water Sci Technol; 2016 Sep; 74(6):1335-1345. PubMed ID: 27685963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms.
    Teng D; Zhang B; Xu G; Wang B; Mao K; Wang J; Sun J; Feng X; Yang Z; Zhang H
    Environ Pollut; 2020 Oct; 265(Pt A):115001. PubMed ID: 32563143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient removal of Cd (II) from aqueous solution by chitosan modified kiwi branch biochar.
    Tan Y; Wan X; Ni X; Wang L; Zhou T; Sun H; Wang N; Yin X
    Chemosphere; 2022 Feb; 289():133251. PubMed ID: 34896419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.