These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35541169)
1. Microfluidic flow switching Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ RSC Adv; 2018 Jan; 8(6):3206-3212. PubMed ID: 35541169 [TBL] [Abstract][Full Text] [Related]
2. On-demand droplet splitting using surface acoustic waves. Jung JH; Destgeer G; Ha B; Park J; Sung HJ Lab Chip; 2016 Aug; 16(17):3235-43. PubMed ID: 27435869 [TBL] [Abstract][Full Text] [Related]
3. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
4. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner. Khan MS; Sahin MA; Destgeer G; Park J Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893 [TBL] [Abstract][Full Text] [Related]
5. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison. Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945 [TBL] [Abstract][Full Text] [Related]
6. Mixing enhancement in T-junction microchannel with acoustic streaming induced by triangular structure. Endaylalu SA; Tien WH Biomicrofluidics; 2021 May; 15(3):034102. PubMed ID: 33986902 [TBL] [Abstract][Full Text] [Related]
7. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves. Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381 [TBL] [Abstract][Full Text] [Related]
8. Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays. Masini L; Cecchini M; Girardo S; Cingolani R; Pisignano D; Beltram F Lab Chip; 2010 Aug; 10(15):1997-2000. PubMed ID: 20526514 [TBL] [Abstract][Full Text] [Related]
9. Acoustic Streaming Efficiency in a Microfluidic Biosensor with an Integrated CMUT. Pelenis D; Vanagas G; Barauskas D; Dzikaras M; Mikolajūnas M; Viržonis D Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241635 [TBL] [Abstract][Full Text] [Related]
10. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance. Mezzanzanica G; Français O; Mariani S Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881 [TBL] [Abstract][Full Text] [Related]
12. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow. Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414 [TBL] [Abstract][Full Text] [Related]
13. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves. Destgeer G; Jung JH; Park J; Ahmed H; Sung HJ Anal Chem; 2017 Jan; 89(1):736-744. PubMed ID: 27959499 [TBL] [Abstract][Full Text] [Related]
14. Acoustofluidic generation of droplets with tunable chemical concentrations. Park J; Destgeer G; Afzal M; Sung HJ Lab Chip; 2020 Oct; 20(21):3922-3929. PubMed ID: 33026382 [TBL] [Abstract][Full Text] [Related]
15. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation. Ahmad R; Destgeer G; Afzal M; Park J; Ahmed H; Jung JH; Park K; Yoon TS; Sung HJ Anal Chem; 2017 Dec; 89(24):13313-13319. PubMed ID: 29148722 [TBL] [Abstract][Full Text] [Related]
16. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics. Travagliati M; Shilton R; Beltram F; Cecchini M J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515 [TBL] [Abstract][Full Text] [Related]
17. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel. Doinikov AA; Thibault P; Marmottant P Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Destgeer G; Sung HJ Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538 [TBL] [Abstract][Full Text] [Related]
19. Acoustothermal heating of polydimethylsiloxane microfluidic system. Ha BH; Lee KS; Destgeer G; Park J; Choung JS; Jung JH; Shin JH; Sung HJ Sci Rep; 2015 Jul; 5():11851. PubMed ID: 26138310 [TBL] [Abstract][Full Text] [Related]
20. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles. Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]