These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35541213)

  • 1. Highly sensitive p-type 4H-SiC van der Pauw sensor.
    Nguyen TK; Phan HP; Han J; Dinh T; Md Foisal AR; Dimitrijev S; Zhu Y; Nguyen NT; Dao DV
    RSC Adv; 2018 Jan; 8(6):3009-3013. PubMed ID: 35541213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of high sensitivity 4H-SiC detectors for fission neutron pulse shape measurements.
    Wu J; Jiang Y; Li M; Zeng L; Li J; Gao H; Zou D; Bai Z; Ye C; Liang W; Dai S; Lu Y; Rong R; Du J; Fan X
    Rev Sci Instrum; 2017 Aug; 88(8):083301. PubMed ID: 28863657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 400 °C Sensor Based on Ni/4H-SiC Schottky Diode for Reliable Temperature Monitoring in Industrial Environments.
    Draghici F; Brezeanu G; Pristavu G; Pascu R; Badila M; Pribeanu A; Ceuca E
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Conductivity of 3C/4H-SiC Nanowires by Molecular Dynamics Simulation.
    Yin K; Shi L; Ma X; Zhong Y; Li M; He X
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Performance Pd/4H-SiC Epitaxial Schottky Barrier Radiation Detectors for Harsh Environment Applications.
    Mandal KC; Chaudhuri SK; Nag R
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Temperature Sensors Based on Dual 4H-SiC JBS and SBD Devices.
    Min SJ; Shin MC; Thi Nguyen N; Oh JM; Koo SM
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide.
    Rahman MH; Chowdhury EH; Redwan DA; Mitra S; Hong S
    Phys Chem Chem Phys; 2021 Mar; 23(9):5244-5253. PubMed ID: 33629670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.
    Jiang Y; Li J; Zhou Z; Jiang X; Zhang D
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of Bulk Micromachined 4H-SiC Piezoresistive Pressure Chips Based on Femtosecond Laser Technology.
    Wang L; Zhao Y; Zhao Y; Yang Y; Gong T; Hao L; Ren W
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33418919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulating the effects of Shockley-type stacking faults on the radiation displacement cascades in 4H-SiC.
    Jiang S; Li Y; Zhang Y; Chen C; Chen Z; Zhu W; He H; Wang X
    RSC Adv; 2024 Aug; 14(38):27778-27788. PubMed ID: 39224629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wear-Resisting and Stable 4H-SiC/Cu-Based Tribovoltaic Nanogenerators for Self-Powered Sensing in a Harsh Environment.
    Xia J; Luo X; Li J; Zhu L; Wang ZL
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55192-55200. PubMed ID: 36461926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the nonlinear piezoresistive effect of 4H-SiC and developing MEMS pressure sensors for extreme environments.
    Wu C; Fang X; Kang Q; Fang Z; Wu J; He H; Zhang D; Zhao L; Tian B; Maeda R; Jiang Z
    Microsyst Nanoeng; 2023; 9():41. PubMed ID: 37025565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4H-SiC surface morphology after Al ion implantation and annealing with C-cap.
    Canino M; Fedeli P; Albonetti C; Nipoti R
    J Microsc; 2020 Dec; 280(3):229-240. PubMed ID: 32495384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices.
    Shi X; Lu Y; Chaussende D; Rottwitt K; Ou H
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC.
    Bracher DO; Hu EL
    Nano Lett; 2015 Sep; 15(9):6202-7. PubMed ID: 26305122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ga
    Song Y; Shoemaker D; Leach JH; McGray C; Huang HL; Bhattacharyya A; Zhang Y; Gonzalez-Valle CU; Hess T; Zhukovsky S; Ferri K; Lavelle RM; Perez C; Snyder DW; Maria JP; Ramos-Alvarado B; Wang X; Krishnamoorthy S; Hwang J; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40817-40829. PubMed ID: 34470105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the van der Pauw method for electrical conductivity measurements at high temperatures using an insulating compressing ring.
    Bowen MS; Cann DP; Woodside CR
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37930251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4H-Silicon Carbide as an Acoustic Material for MEMS.
    Long Y; Liu Z; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1189-1200. PubMed ID: 37276110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Thermal Oxides on 4H Silicon Carbide (4H-SiC) Epitaxial Substrate Using Fourier Transform Infrared Spectroscopy.
    Yoshikawa M; Seki H; Inoue K; Kobayashi T; Kimoto T
    Appl Spectrosc; 2015 Sep; ():. PubMed ID: 26337495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Field Emission from Vertically Oriented SiC Nanoarrays.
    Xiao J; Zhao J; Liu G; Cole MT; Zhou S; Chen K; Liu X; Li Z; Li C; Dai Q
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.