These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35541388)

  • 1. Three-dimensionally printed pressure sensor arrays from hysteresis-less stretchable piezoresistive composites.
    Kang JH; Kim JY; Jo Y; Kim HS; Jung SM; Lee SY; Choi Y; Jeong S
    RSC Adv; 2019 Dec; 9(68):39993-40002. PubMed ID: 35541388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensionally Printed Stretchable Conductors from Surfactant-Mediated Composite Pastes.
    Lee HS; Jo Y; Joo JH; Woo K; Zhong Z; Jung S; Lee SY; Choi Y; Jeong S
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12622-12631. PubMed ID: 30855933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Piezoresistive Sensors Embedded in 3D Printed Tires.
    Emon MO; Choi JW
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28327533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing of Highly Sensitive and Large-Measurement-Range Flexible Pressure Sensors with a Positive Piezoresistive Effect.
    Tang Z; Jia S; Zhou C; Li B
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28669-28680. PubMed ID: 32466639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Multistack-Printed, Self-Powered Flexible Pressure Sensor Arrays: Piezoelectric Composites with Chemically Anchored Heterogeneous Interfaces.
    Jeong SI; Lee EJ; Hong GR; Jo Y; Jung SM; Lee SY; Choi Y; Jeong S
    ACS Omega; 2020 Feb; 5(4):1956-1965. PubMed ID: 32039332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors.
    Fekiri C; Kim HC; Lee IH
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels.
    Crump MR; Gong AT; Chai D; Bidinger SL; Pavinatto FJ; Reihsen TE; Sweet RM; MacKenzie JD
    Nanotechnology; 2019 Sep; 30(36):364002. PubMed ID: 31121565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coaxial Printing of Silicone Elastomer Composite Fibers for Stretchable and Wearable Piezoresistive Sensors.
    Tang Z; Jia S; Shi X; Li B; Zhou C
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30979015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range.
    Mitrakos V; Hands PJW; Cummins G; Macintyre L; Denison FC; Flynn D; Desmulliez MPY
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Piezo-Resistance Composites Containing Thermoplastic Polyurethane/Hybrid Filler Using 3D Printing.
    Song K; Son H; Park S; Lee J; Jang J; Lee M; Choi HJ
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Fabrication, and Implementation of an Array-Type MEMS Piezoresistive Intelligent Pressure Sensor System.
    Zhang J; Chen J; Li M; Ge Y; Wang T; Shan P; Mao X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range.
    Shi J; Wang L; Dai Z; Zhao L; Du M; Li H; Fang Y
    Small; 2018 Jul; 14(27):e1800819. PubMed ID: 29847706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Solution-Processable, Omnidirectionally Stretchable, and High-Pressure-Sensitive Piezoresistive Device.
    Roh E; Lee HB; Kim DI; Lee NE
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28960525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable Piezoresistive Pressure Sensor Array with Sophisticated Sensitivity, Strain-Insensitivity, and Reproducibility.
    Choi SB; Noh T; Jung SB; Kim JW
    Adv Sci (Weinh); 2024 Sep; 11(35):e2405374. PubMed ID: 39013112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-Range Motion Recognition Through Insole Sensor Using Multi-Walled Carbon Nanotubes and Polydimethylsiloxane Composites.
    Heo JS; Soleymanpour R; Lam J; Goldberg D; Large E; Park SK; Kim I
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):581-588. PubMed ID: 34255638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive Piezoresistive Pressure Sensor Based on Super-Elastic 3D Buckling Carbon Nanofibers for Human Physiological Signals' Monitoring.
    Pang Z; Zhao Y; Luo N; Chen D; Chen M
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyisoprene-multi wall carbon nanotube composite structure for flexible pressure sensor application.
    Knite M; Zavickis J; Teteris V; Linarts A
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8677-81. PubMed ID: 22400242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sponge-Hosting Polyaniline Array Microstructures for Piezoresistive Sensors with a Wide Detection Range and High Sensitivity.
    Li L; Bao X; Meng J; Zhang C; Liu T
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30228-30235. PubMed ID: 35728515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network.
    Yu R; Xia T; Wu B; Yuan J; Ma L; Cheng GJ; Liu F
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35291-35299. PubMed ID: 32640161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Soft Pressure Sensor Array Based on a Conducting Nanomembrane.
    Jung D; Kang K; Jung H; Seong D; An S; Yoon J; Kim W; Shin M; Baac HW; Won S; Shin C; Son D
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.