These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35541531)

  • 1. Sequential BN-doping induced tuning of electronic properties in zigzag-edged graphene nanoribbons: a computational approach.
    Sarmah A; Hobza P
    RSC Adv; 2018 Mar; 8(20):10964-10974. PubMed ID: 35541531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field.
    Ilyasov VV; Meshi BC; Nguyen VC; Ershov IV; Nguyen DC
    J Chem Phys; 2014 Jul; 141(1):014708. PubMed ID: 25005304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferroelectric surface induced electron doping in a zigzag graphene nanoribbon.
    Belletti GD; Dalosto SD; Tinte S
    J Phys Condens Matter; 2016 Nov; 28(43):435002. PubMed ID: 27603305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.
    Huang LF; Zhang GR; Zheng XH; Gong PL; Cao TF; Zeng Z
    J Phys Condens Matter; 2013 Feb; 25(5):055304. PubMed ID: 23300171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface effects in hybrid hBN-graphene nanoribbons.
    Leon C; Costa M; Chico L; Latgé A
    Sci Rep; 2019 Mar; 9(1):3508. PubMed ID: 30837518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intercalated atoms on electronic structure of graphene nanoribbon/hexagonal boron nitride stacked layer.
    Sung D; Kim G; Hong S
    Sci Rep; 2019 Mar; 9(1):3623. PubMed ID: 30842541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effect of strain and intrinsic spin-orbit coupling on band gap engineering of GNRs: a first-principles study.
    Kumar S; Pratap S; Trivedi R; Chakraborty B
    J Phys Condens Matter; 2024 Sep; 36(48):. PubMed ID: 39191274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the Sensing Performance of Zigzag Graphene Nanoribbon to Detect NO, NO
    Salih E; Ayesh AI
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32679692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.
    Tao X; Zhang L; Zheng X; Hao H; Wang X; Song L; Zeng Z; Guo H
    Nanoscale; 2017 Dec; 10(1):174-183. PubMed ID: 29210400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles.
    Ni Y; Li J; Tao W; Ding H; Li RX
    Phys Chem Chem Phys; 2021 Feb; 23(4):2753-2761. PubMed ID: 33471019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene.
    Yu S; Zheng W; Wang C; Jiang Q
    ACS Nano; 2010 Dec; 4(12):7619-29. PubMed ID: 21090583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects.
    Tang GP; Zhang ZH; Deng XQ; Fan ZQ; Zhu HL
    Phys Chem Chem Phys; 2015 Jan; 17(1):638-43. PubMed ID: 25407715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review.
    Kumar S; Pratap S; Kumar V; Mishra RK; Gwag JS; Chakraborty B
    Luminescence; 2023 Jul; 38(7):909-953. PubMed ID: 35850156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Dimensional Magnetic Conduction Channels across Zigzag Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions.
    Pizzochero M; Tepliakov NV; Lischner J; Mostofi AA; Kaxiras E
    Nano Lett; 2024 Jun; 24(22):6521-6528. PubMed ID: 38788172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach.
    Yun J; Lee G; Kim KS
    J Phys Chem Lett; 2016 Jul; 7(13):2478-82. PubMed ID: 27299184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of hydrogenated two-dimensional h-BN/C superlattices as electrostatic substrates.
    Liu Z; Zhong X; Yan H; Wang RZ
    Phys Chem Chem Phys; 2016 Jan; 18(2):974-81. PubMed ID: 26661743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Spin Distribution and Electronic Properties in FeN
    Oguz IC; Jaouen F; Mineva T
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.