These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35541558)

  • 1. LAPONITE® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds.
    Tang L; Wei W; Wang X; Qian J; Li J; He A; Yang L; Jiang X; Li X; Wei J
    RSC Adv; 2018 Mar; 8(20):10794-10805. PubMed ID: 35541558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate.
    Wu Z; Li Q; Pan Y; Yao Y; Tang S; Su J; Shin JW; Wei J; Zhao J
    Int J Nanomedicine; 2017; 12():3637-3651. PubMed ID: 28553104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair.
    Wu Z; Zheng K; Zhang J; Tang T; Guo H; Boccaccini AR; Wei J
    J Mater Chem B; 2016 Dec; 4(48):7974-7988. PubMed ID: 32263787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zein regulating apatite mineralization, degradability,
    Ru J; Wei Q; Yang L; Qin J; Tang L; Wei J; Guo L; Niu Y
    RSC Adv; 2018 May; 8(34):18745-18756. PubMed ID: 35539669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable mesoporous calcium-magnesium silicate-polybutylene succinate scaffolds for osseous tissue engineering.
    Zhang X; Zhang C; Xu W; Zhong B; Lin F; Zhang J; Wang Q; Ji J; Wei J; Zhang Y
    Int J Nanomedicine; 2015; 10():6699-708. PubMed ID: 26604746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite.
    Zhao Q; Tang H; Ren L; Wei J
    Int J Nanomedicine; 2020; 15():7279-7295. PubMed ID: 33061381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration.
    Niu Y; Guo L; Liu J; Shen H; Su J; An X; Yu B; Wei J; Shin JW; Guo H; Ji F; He D
    J Mater Chem B; 2015 Apr; 3(15):2962-2970. PubMed ID: 32262496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and osteogenic evaluation of mesoporous magnesium-calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping.
    Kang YG; Wei J; Kim JE; Wu YR; Lee EJ; Su J; Shin JW
    RSC Adv; 2018 Sep; 8(59):33882-33892. PubMed ID: 35548789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(L-lactide) composite.
    Liu Z; Ji J; Tang S; Qian J; Yan Y; Yu B; Su J; Wei J
    J R Soc Interface; 2015 Oct; 12(111):20150507. PubMed ID: 26378120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process.
    Zhang D; Chang J; Zeng Y
    J Mater Sci Mater Med; 2008 Jan; 19(1):443-9. PubMed ID: 17607518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly (Butylene Succinate)/Silicon Nitride Nanocomposite with Optimized Physicochemical Properties, Biocompatibility, Degradability, and Osteogenesis for Cranial Bone Repair.
    Zhao Q; Gao S
    J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36412871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoinduction of stem cells by collagen peptide-immobilized hydrolyzed poly(butylene succinate)/β-tricalcium phosphate scaffold for bone tissue engineering.
    Patntirapong S; Janvikul W; Theerathanagorn T; Singhatanadgit W
    J Biomater Appl; 2017 Jan; 31(6):859-870. PubMed ID: 30208806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites.
    Wang S; Gu Z; Wang Z; Chen X; Cao L; Cai L; Li Q; Wei J; Shin JW; Su J
    Sci Rep; 2018 Jan; 8(1):174. PubMed ID: 29317753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial.
    Li H; Chang J; Cao A; Wang J
    Macromol Biosci; 2005 May; 5(5):433-40. PubMed ID: 15889389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffolds of hydroxyl apatite nanoparticles disseminated in 1, 6-diisocyanatohexane-extended poly(1, 4-butylene succinate)/poly(methyl methacrylate) for bone tissue engineering.
    Kaur K; Singh KJ; Anand V; Bhatia G; Kaur R; Kaur M; Nim L; Arora DS
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():780-790. PubMed ID: 27987773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): The effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro.
    Shams M; Karimi M; Heydari M; Salimi A
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111271. PubMed ID: 32919635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of rBMSCs Responses to Poly(propylene carbonate) Based Biomaterial through Incorporation of Nanolaponite and Surface Treatment Using Sodium Hydroxide.
    Liu J; Shen X; Tang S; Li H; Mei S; Zheng H; Sun Y; Zhao J; Kaewmanee R; Yang L; Gan Q; Wei J
    ACS Biomater Sci Eng; 2020 Jan; 6(1):329-339. PubMed ID: 33463218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.