BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35541758)

  • 1. Egress and invasion machinery of malaria: an in-depth look into the structural and functional features of the flap dynamics of plasmepsin IX and X.
    Munsamy G; Ramharack P; Soliman MES
    RSC Adv; 2018 Jun; 8(39):21829-21840. PubMed ID: 35541758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses.
    McGillewie L; Soliman ME
    Proteins; 2015 Sep; 83(9):1693-705. PubMed ID: 26146842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual target of Plasmepsin IX and X: Unveiling the atomistic superiority of a core chemical scaffold in malaria therapy.
    Munsamy G; Agoni C; Soliman MES
    J Cell Biochem; 2019 May; 120(5):7876-7887. PubMed ID: 30430636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding landscape of plasmepsin V and the implications for flap dynamics.
    L M; Soliman ME
    Mol Biosyst; 2016 Apr; 12(5):1457-67. PubMed ID: 26965894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases.
    Bobrovs R; Jaudzems K; Jirgensons A
    J Med Chem; 2019 Oct; 62(20):8931-8950. PubMed ID: 31062983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations.
    Valiente PA; Batista PR; Pupo A; Pons T; Valencia A; Pascutti PG
    Proteins; 2008 Nov; 73(2):440-57. PubMed ID: 18442137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azole-based non-peptidomimetic plasmepsin inhibitors.
    Kinena L; Leitis G; Kanepe-Lapsa I; Bobrovs R; Jaudzems K; Ozola V; Suna E; Jirgensons A
    Arch Pharm (Weinheim); 2018 Sep; 351(9):e1800151. PubMed ID: 30063266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmepsins as potential targets for new antimalarial therapy.
    Ersmark K; Samuelsson B; Hallberg A
    Med Res Rev; 2006 Sep; 26(5):626-66. PubMed ID: 16838300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptidomimetic plasmepsin inhibitors with potent anti-malarial activity and selectivity against cathepsin D.
    Zogota R; Kinena L; Withers-Martinez C; Blackman MJ; Bobrovs R; Pantelejevs T; Kanepe-Lapsa I; Ozola V; Jaudzems K; Suna E; Jirgensons A
    Eur J Med Chem; 2019 Feb; 163():344-352. PubMed ID: 30529637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basis for drug selectivity of plasmepsin IX and X inhibition in Plasmodium falciparum and vivax.
    Hodder AN; Christensen J; Scally S; Triglia T; Ngo A; Birkinshaw RW; Bailey B; Favuzza P; Dietrich MH; Tham WH; Czabotar PE; Lowes K; Guo Z; Murgolo N; Lera Ruiz M; McCauley JA; Sleebs BE; Olsen D; Cowman AF
    Structure; 2022 Jul; 30(7):947-961.e6. PubMed ID: 35460613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling a New Era in Malaria Therapeutics: A Tailored Molecular Approach Towards the Design of Plasmepsin IX Inhibitors.
    Munsamy G; Soliman MES
    Protein J; 2019 Dec; 38(6):616-627. PubMed ID: 31586296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.
    Li F; Bounkeua V; Pettersen K; Vinetz JM
    Malar J; 2016 Feb; 15():111. PubMed ID: 26911483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion.
    Nasamu AS; Glushakova S; Russo I; Vaupel B; Oksman A; Kim AS; Fremont DH; Tolia N; Beck JR; Meyers MJ; Niles JC; Zimmerberg J; Goldberg DE
    Science; 2017 Oct; 358(6362):518-522. PubMed ID: 29074774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fighting malaria: structure-guided discovery of nonpeptidomimetic plasmepsin inhibitors.
    Huizing AP; Mondal M; Hirsch AK
    J Med Chem; 2015 Jul; 58(13):5151-63. PubMed ID: 25719272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A target safety assessment of the potential toxicological risks of targeting plasmepsin IX/X for the treatment of malaria.
    Barber J; Sikakana P; Sadler C; Baud D; Valentin JP; Roberts R
    Toxicol Res (Camb); 2021 Mar; 10(2):203-213. PubMed ID: 33884171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimalarials: Review of Plasmepsins as Drug Targets and HIV Protease Inhibitors Interactions.
    Miller Iii WA; Teye J; Achieng AO; Mogire RM; Akala H; Ong'echa JM; Rathi B; Durvasula R; Kempaiah P; Kwofie SK
    Curr Top Med Chem; 2019; 18(23):2022-2028. PubMed ID: 30499404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrrolidine derivatives as plasmepsin inhibitors: binding mode analysis assisted by molecular dynamics simulations of a highly flexible protein.
    Luksch T; Blum A; Klee N; Diederich WE; Sotriffer CA; Klebe G
    ChemMedChem; 2010 Mar; 5(3):443-54. PubMed ID: 20112327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flap dynamics of plasmepsin proteases: insight into proposed parameters and molecular dynamics.
    Karubiu W; Bhakat S; McGillewie L; Soliman ME
    Mol Biosyst; 2015 Apr; 11(4):1061-6. PubMed ID: 25630418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the pH- and Ligand-Dependent Flap Dynamics of Malarial Plasmepsin II.
    Henderson JA; Shen J
    J Chem Inf Model; 2022 Jan; 62(1):150-158. PubMed ID: 34964641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flap Dynamics in Pepsin-Like Aspartic Proteases: A Computational Perspective Using Plasmepsin-II and BACE-1 as Model Systems.
    Bhakat S; Söderhjelm P
    J Chem Inf Model; 2022 Feb; 62(4):914-926. PubMed ID: 35138093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.