BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35541768)

  • 1. Branched polyethyleneimine-assisted 3-carboxybenzoboroxole improved Wulff-type boronic acid functionalized magnetic nanoparticles for the specific capture of
    Li D; Liu Z; Song R; Yang W; Zhai S; Wang W
    RSC Adv; 2019 Nov; 9(65):38038-38046. PubMed ID: 35541768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient separation and enrichment of polyphenols by 6-aminopyridine-3-boronic acid-functionalized magnetic nanoparticles assisted by polyethylenimine.
    Zhang Y; Qing L; Xu L
    RSC Adv; 2022 Feb; 12(11):6881-6887. PubMed ID: 35424593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preparation of branched polyethyleneimine-assisted boric acid-functionalized magnetic nanoparticles and its application to selective enrichment of ginsenoside Re].
    Li X; Yan Z; Li L; Ma T; Chen Y
    Se Pu; 2021 Jun; 39(6):599-606. PubMed ID: 34227320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branched polyethylenimine-assisted boronic acid functionalized magnetic nanoparticles for highly efficient capture of lincomycin and clindamycin.
    Zhang Y; Li D; Li Y; Niu J; Yuan M
    Anal Methods; 2023 Jun; 15(21):2657-2664. PubMed ID: 37204416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched polyethyleneimine-assisted boronic acid-functionalized magnetic nanoparticles for the selective enrichment of trace glycoproteins.
    Li D; Bie Z
    Analyst; 2017 Nov; 142(23):4494-4502. PubMed ID: 29094730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branched polyethyleneimine-assisted boronic acid-functionalized silica nanoparticles for the selective enrichment of trace glycoproteins.
    Li D; Xia H; Wang L
    Talanta; 2018 Jul; 184():235-243. PubMed ID: 29674038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 6-Aminopyridine-3-boronic acid functionalized magnetic nanoparticles for highly efficient enrichment of
    Li D; Dong S
    Anal Methods; 2021 May; 13(20):2331-2337. PubMed ID: 33969834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of cis-diol-containing flavonoids in real samples using boronate affinity quantum dots coated with imprinted silica based on controllable oriented surface imprinting approach.
    Li D; Zhai S; Song R; Liu Z; Wang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117542. PubMed ID: 31685427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in enrichment and separation of
    Zhang A; Zhang J
    Se Pu; 2022 Nov; 40(11):966-978. PubMed ID: 36351805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of fluorophenylboronic acid-functionalized monolithic columns for high affinity capture of cis-diol containing compounds.
    Li Q; Lü C; Liu Z
    J Chromatogr A; 2013 Aug; 1305():123-30. PubMed ID: 23885669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boronate affinity adsorption of cis-diol-containing biomolecules in nonaqueous solvent.
    Zhang L; Wang C; Wei Y
    Biomed Chromatogr; 2015 Aug; 29(8):1133-6. PubMed ID: 25624166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoregulated extraction of luteolin under neutral conditions using oligo(ethylene glycol)-based magnetic nanoparticles with Wulff-type boronate affinity.
    Li N; Qiu J; Liu H; Chen Z; Qian Y
    J Chromatogr A; 2019 Dec; 1607():460396. PubMed ID: 31471134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethyleneimine-grafted boronate affinity materials for selective enrichment of cis-diol-containing compounds.
    Xue Y; Shi W; Zhu B; Gu X; Wang Y; Yan C
    Talanta; 2015 Aug; 140():1-9. PubMed ID: 26048816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity.
    Liu Z; He H
    Acc Chem Res; 2017 Sep; 50(9):2185-2193. PubMed ID: 28849912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins.
    Li D; Li Y; Li X; Bie Z; Pan X; Zhang Q; Liu Z
    J Chromatogr A; 2015 Mar; 1384():88-96. PubMed ID: 25638264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica stationary phase functionalized by 4-carboxy-benzoboroxole with enhanced boronate affinity nature for selective capture and separation of cis-diol compounds.
    Li H; Zhang X; Zhang L; Cheng W; Kong F; Fan D; Li L; Wang W
    Anal Chim Acta; 2017 Sep; 985():91-100. PubMed ID: 28864199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boronate affinity-based template-immobilization surface imprinted quantum dots as fluorescent nanosensors for selective and sensitive detection of myricetin.
    Zhang Y; Tian X; Zhang Z; Tang N; Ding Y; Wang Y; Li D
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():121023. PubMed ID: 35182922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boronoisophthalic acid as a novel affinity ligand for the selective capture and release of glycoproteins near physiological pH.
    Ali MM; Hussain D; Tang Y; Sun X; Shen Z; Zhang F; Du Z
    Talanta; 2021 Apr; 225():121896. PubMed ID: 33592691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of
    Wang F; Xiong S; Wang T; Hou Y; Li Q
    Anal Methods; 2023 Nov; 15(43):5803-5812. PubMed ID: 37901988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wulff-type boronate for boronate affinity capture of cis-diol compounds at medium acidic pH condition.
    Li H; Liu Y; Liu J; Liu Z
    Chem Commun (Camb); 2011 Jul; 47(28):8169-71. PubMed ID: 21687891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.