BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35541834)

  • 21. Length difference of multi-walled carbon nanotubes generates differential cytotoxic responses.
    Do NT; Kim S; Kwak M; Lee TG; Jo DG; Lee SW; Kim SH
    J Appl Toxicol; 2021 Sep; 41(9):1414-1424. PubMed ID: 33398895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells
    Wu B; Jiang M; Liu X; Huang C; Gu Z; Cao Y
    Nanotoxicology; 2020 Oct; 14(8):1017-1038. PubMed ID: 32574508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.
    Fanizza C; Casciardi S; Incoronato F; Cavallo D; Ursini CL; Ciervo A; Maiello R; Fresegna AM; Marcelloni AM; Lega D; Alvino A; Baiguera S
    J Microsc; 2015 Sep; 259(3):173-84. PubMed ID: 25865182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells.
    Nymark P; Jensen KA; Suhonen S; Kembouche Y; Vippola M; Kleinjans J; Catalán J; Norppa H; van Delft J; Briedé JJ
    Part Fibre Toxicol; 2014 Jan; 11():4. PubMed ID: 24438343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties.
    Fujita K; Obara S; Maru J; Endoh S
    Toxicol Mech Methods; 2020 Sep; 30(7):477-489. PubMed ID: 32345130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the iron catalyst in the toxicity of multi-walled carbon nanotubes (MWCNTs).
    Visalli G; Facciolà A; Iannazzo D; Piperno A; Pistone A; Di Pietro A
    J Trace Elem Med Biol; 2017 Sep; 43():153-160. PubMed ID: 28126205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of lipid droplets in THP-1 macrophages by multi-walled carbon nanotubes in a diameter-dependent manner: A transcriptomic study.
    Yang T; Chen J; Gao L; Huang Y; Liao G; Cao Y
    Toxicol Lett; 2020 Oct; 332():65-73. PubMed ID: 32649966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure.
    Dandley EC; Taylor AJ; Duke KS; Ihrie MD; Shipkowski KA; Parsons GN; Bonner JC
    Part Fibre Toxicol; 2016 Jun; 13(1):29. PubMed ID: 27278808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-walled carbon nanotubes promoted lipid accumulation in human aortic smooth muscle cells.
    Yang H; Li J; Yang C; Liu H; Cao Y
    Toxicol Appl Pharmacol; 2019 Jul; 374():11-19. PubMed ID: 31047983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Caffeic acid protects mice pancreatic islets from oxidative stress induced by multi-walled carbon nanotubes (MWCNTs).
    Ahangarpour A; Alboghobeish S; Oroojan AA; Dehghani MA
    Vet Res Forum; 2021; 12(1):77-85. PubMed ID: 33953877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low doses of multi-walled carbon nanotubes elicit hepatotoxicity in rats with markers of oxidative stress and induction of pro-inflammatory cytokines.
    Adedara IA; Anao OO; Forcados GE; Awogbindin IO; Agbowo A; Ola-Davies OE; Patlolla AK; Tchounwou PB; Farombi EO
    Biochem Biophys Res Commun; 2018 Sep; 503(4):3167-3173. PubMed ID: 30149914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.
    Ding Y; Tian R; Yang Z; Chen J; Lu N
    Biophys Chem; 2017 Mar; 222():1-6. PubMed ID: 28042968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of an ultrasensitive impedimetric buprenorphine hydrochloride biosensor from computational and experimental angles.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Jun; 124():27-35. PubMed ID: 24767442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro.
    Guo YY; Zhang J; Zheng YF; Yang J; Zhu XQ
    Mutat Res; 2011 Apr; 721(2):184-91. PubMed ID: 21296185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Comparative analysis for the cytotoxicity and genotoxicity of multi-walled carbon nanotubes with different lengths and surface modifications in A549 cells].
    Pu J; Chen T; Chen ZJ; Wang HF; Nie HY; Jia G
    Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Jun; 45(3):405-11. PubMed ID: 23774918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.
    Liu Z; Liu Y; Peng D
    Environ Toxicol Pharmacol; 2016 Oct; 47():124-130. PubMed ID: 27669016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium.
    Wang C; Liu H; Chen J; Tian Y; Shi J; Li D; Guo C; Ma Q
    J Hazard Mater; 2014 Jun; 274():404-12. PubMed ID: 24806869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes.
    Liu M; Pi J; Wang X; Huang R; Du Y; Yu X; Tan W; Liu F; Shea KJ
    Anal Chim Acta; 2016 Aug; 932():29-40. PubMed ID: 27286767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats.
    Clichici S; Biris AR; Tabaran F; Filip A
    Toxicol Appl Pharmacol; 2012 Mar; 259(3):281-92. PubMed ID: 22280989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production.
    Cao Y; Roursgaard M; Danielsen PH; Møller P; Loft S
    PLoS One; 2014; 9(9):e106711. PubMed ID: 25184212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.