These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35541886)

  • 1. Tunable graphene doping by modulating the nanopore geometry on a SiO
    Lim N; Yoo TJ; Kim JT; Pak Y; Kumaresan Y; Kim H; Kim W; Lee BH; Jung GY
    RSC Adv; 2018 Feb; 8(17):9031-9037. PubMed ID: 35541886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions.
    Xu H; Wu J; Chen Y; Zhang H; Zhang J
    Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates.
    Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA
    J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing Remote Bulk Defects through Resistance Noise in a Large-Area Graphene Field-Effect Transistor.
    Moulick S; Alam R; Pal AN
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51105-51112. PubMed ID: 36323003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy.
    Xu H; Chen Y; Zhang J; Zhang H
    Small; 2012 Sep; 8(18):2833-40. PubMed ID: 22678822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimizing Unintentional Strain and Doping of Single-Layer Graphene on SiO2 in Aqueous Environments by Acid Treatments.
    Masuda K; Sano M
    Langmuir; 2015 May; 31(17):4934-9. PubMed ID: 25876188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping of graphene induced by boron/silicon substrate.
    Dianat A; Liao Z; Gall M; Zhang T; Gutierrez R; Zschech E; Cuniberti G
    Nanotechnology; 2017 May; 28(21):215701. PubMed ID: 28402285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Optical Properties of MoS
    Han T; Liu H; Wang S; Chen S; Li W; Yang X; Cai M; Yang K
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31091719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Doping in Graphene Monolayers by Trapping Organic Molecules at the Graphene-Substrate Interface.
    Srivastava PK; Yadav P; Rani V; Ghosh S
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5375-5381. PubMed ID: 28094503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer free graphene growth on SiO
    Vishwakarma R; Rosmi MS; Takahashi K; Wakamatsu Y; Yaakob Y; Araby MI; Kalita G; Kitazawa M; Tanemura M
    Sci Rep; 2017 Mar; 7():43756. PubMed ID: 28251997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensor Based on Graphene Directly Grown by MW-PECVD for Detection of COVID-19 Spike (S) Protein and Its Entry Receptor ACE2.
    Meškinis Š; Gudaitis R; Vasiliauskas A; Guobienė A; Jankauskas Š; Stankevič V; Keršulis S; Stirkė A; Andriukonis E; Melo W; Vertelis V; Žurauskienė N
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical Charge Transfer and Lateral Transport in Graphene/Germanium Heterostructures.
    Kazemi A; Vaziri S; Aguirre Morales JD; Frégonèse S; Cavallo F; Zamiri M; Dawson N; Artyushkova K; Jiang YB; Brueck SJR; Krishna S
    ACS Appl Mater Interfaces; 2017 May; 9(18):15830-15840. PubMed ID: 28425287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doping Graphene Transistors Using Vertical Stacked Monolayer WS2 Heterostructures Grown by Chemical Vapor Deposition.
    Tan H; Fan Y; Rong Y; Porter B; Lau CS; Zhou Y; He Z; Wang S; Bhaskaran H; Warner JH
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1644-52. PubMed ID: 26756350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics.
    Wang L; Guo Z; Lan Q; Song W; Zhong Z; Yang K; Zhao T; Huang H; Zhang C; Shi W
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.
    Arezki H; Boutchich M; Alamarguy D; Madouri A; Alvarez J; Cabarrocas PR; Kleider JP; Yao F; Hee Lee Y
    J Phys Condens Matter; 2016 Oct; 28(40):404001. PubMed ID: 27506254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling graphene work function by doping in a MOCVD reactor.
    Klein C; Cohen-Elias D; Sarusi G
    Heliyon; 2018 Dec; 4(12):e01030. PubMed ID: 30582048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2.
    Lee DS; Riedl C; Krauss B; von Klitzing K; Starke U; Smet JH
    Nano Lett; 2008 Dec; 8(12):4320-5. PubMed ID: 19368003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates.
    Li XL; Qiao XF; Han WP; Lu Y; Tan QH; Liu XL; Tan PH
    Nanoscale; 2015 May; 7(17):8135-41. PubMed ID: 25875074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Quality N-Doped Graphene with Controllable Nitrogen Bonding Configurations Derived from Ionic Liquids.
    Li S; Liu M; Wang X; Ye G; Peng Y; Zhao Y; Guan S
    Chem Asian J; 2022 Jul; 17(14):e202200192. PubMed ID: 35714292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.