These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 35541902)
1. Smad3 Signatures in Renal Inflammation and Fibrosis. Wu W; Wang X; Yu X; Lan HY Int J Biol Sci; 2022; 18(7):2795-2806. PubMed ID: 35541902 [TBL] [Abstract][Full Text] [Related]
2. TGF-β/Smad signaling in kidney disease. Lan HY; Chung AC Semin Nephrol; 2012 May; 32(3):236-43. PubMed ID: 22835454 [TBL] [Abstract][Full Text] [Related]
3. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614 [TBL] [Abstract][Full Text] [Related]
4. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Lan HY Int J Biol Sci; 2011; 7(7):1056-67. PubMed ID: 21927575 [TBL] [Abstract][Full Text] [Related]
5. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. Huang XZ; Wen D; Zhang M; Xie Q; Ma L; Guan Y; Ren Y; Chen J; Hao CM J Cell Biochem; 2014 May; 115(5):996-1005. PubMed ID: 24356887 [TBL] [Abstract][Full Text] [Related]
6. Long Noncoding RNA Arid2-IR Is a Novel Therapeutic Target for Renal Inflammation. Zhou Q; Huang XR; Yu J; Yu X; Lan HY Mol Ther; 2015 Jun; 23(6):1034-1043. PubMed ID: 25743111 [TBL] [Abstract][Full Text] [Related]
7. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. Meng XM; Huang XR; Xiao J; Chen HY; Zhong X; Chung AC; Lan HY J Pathol; 2012 Jun; 227(2):175-88. PubMed ID: 22190171 [TBL] [Abstract][Full Text] [Related]
8. Long Non-Coding RNA (LncRNA)-ATB Promotes Inflammation, Cell Apoptosis and Senescence in Transforming Growth Factor-β1 (TGF-β1) Induced Human Kidney 2 (HK-2) Cells via TGFβ/SMAD2/3 Signaling Pathway. Sun H; Ke C; Zhang L; Tian C; Zhang Z; Wu S Med Sci Monit; 2020 May; 26():e922029. PubMed ID: 32447340 [TBL] [Abstract][Full Text] [Related]
9. Increased fibrotic signaling in a murine model for intra-arterial contrast-induced acute kidney injury. Sharma A; Kilari S; Cai C; Simeon ML; Misra S Am J Physiol Renal Physiol; 2020 May; 318(5):F1210-F1219. PubMed ID: 32200666 [TBL] [Abstract][Full Text] [Related]
10. MicroRNA-10 Family Promotes Renal Fibrosis through the VASH-1/Smad3 Pathway. Shuai Y; Xu N; Zhao C; Yang F; Ning Z; Li G Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791272 [TBL] [Abstract][Full Text] [Related]
11. Disruption of Smad7 promotes ANG II-mediated renal inflammation and fibrosis via Sp1-TGF-β/Smad3-NF.κB-dependent mechanisms in mice. Liu GX; Li YQ; Huang XR; Wei L; Chen HY; Shi YJ; Heuchel RL; Lan HY PLoS One; 2013; 8(1):e53573. PubMed ID: 23301086 [TBL] [Abstract][Full Text] [Related]
12. Novel RAS Inhibitors Poricoic Acid ZG and Poricoic Acid ZH Attenuate Renal Fibrosis via a Wnt/β-Catenin Pathway and Targeted Phosphorylation of smad3 Signaling. Wang M; Chen DQ; Chen L; Liu D; Zhao H; Zhang ZH; Vaziri ND; Guo Y; Zhao YY; Cao G J Agric Food Chem; 2018 Feb; 66(8):1828-1842. PubMed ID: 29383936 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of microRNA-21 mediates Ang II-induced renal fibrosis by activating the TGF-β1/Smad3 pathway via suppressing PPARα. Lyu H; Li X; Wu Q; Hao L J Pharmacol Sci; 2019 Sep; 141(1):70-78. PubMed ID: 31611175 [TBL] [Abstract][Full Text] [Related]
14. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Gu YY; Liu XS; Lan HY Mol Ther; 2024 Feb; 32(2):313-324. PubMed ID: 38093516 [TBL] [Abstract][Full Text] [Related]
16. Smad3 mediates ANG II-induced hypertensive kidney disease in mice. Liu Z; Huang XR; Lan HY Am J Physiol Renal Physiol; 2012 Apr; 302(8):F986-97. PubMed ID: 22237801 [TBL] [Abstract][Full Text] [Related]
17. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Xianyuan L; Wei Z; Yaqian D; Dan Z; Xueli T; Zhanglu D; Guanyi L; Lan T; Menghua L Phytomedicine; 2019 Feb; 53():274-285. PubMed ID: 30668407 [TBL] [Abstract][Full Text] [Related]
18. Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κB and transforming growth factor-β1/Smad3 in diabetic nephropathy. Li L; Emmett N; Mann D; Zhao X Exp Biol Med (Maywood); 2010 Mar; 235(3):383-91. PubMed ID: 20404057 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Wang B; Jha JC; Hagiwara S; McClelland AD; Jandeleit-Dahm K; Thomas MC; Cooper ME; Kantharidis P Kidney Int; 2014 Feb; 85(2):352-61. PubMed ID: 24088962 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. Huang C; Day ML; Poronnik P; Pollock CA; Chen XM Int J Biochem Cell Biol; 2014 Feb; 47():1-10. PubMed ID: 24291552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]