These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35541938)

  • 1. MoS
    Oumahi C; De Barros-Bouchet MI; Le Mogne T; Charrin C; Loridant S; Geantet C; Afanasiev P; Thiebaut B
    RSC Adv; 2018 Jul; 8(46):25867-25872. PubMed ID: 35541938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal.
    Xu D; Wang C; Espejo C; Wang J; Neville A; Morina A
    Langmuir; 2018 Nov; 34(45):13523-13533. PubMed ID: 30347974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ tribochemical sulfurization of molybdenum oxide nanotubes.
    Rodríguez Ripoll M; Tomala A; Gabler C; DraŽić G; Pirker L; Remškar M
    Nanoscale; 2018 Feb; 10(7):3281-3290. PubMed ID: 29384160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of molybdenum dialkyl dithiocarbamate (MoDTC) tribofilms via time-resolved Raman spectroscopy.
    Garcia CE; Ueda M; Spikes H; Wong JSS
    Sci Rep; 2021 Feb; 11(1):3621. PubMed ID: 33574354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Tribofilm Formation in Boundary Lubrication Investigated Using In Situ Measurements of the Friction Force and Contact Voltage.
    Tsai AE; Komvopoulos K
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma-Functionalized Polytetrafluoroethylene Nanoparticles for Improved Wear in Lubricated Contact.
    Sharma V; Timmons R; Erdemir A; Aswath PB
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25631-25641. PubMed ID: 28657292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tribological performance of organic molybdenum in the presence of organic friction modifier.
    Wang W; Liu Z; Song Q; Zhang X; Jiao S; Xu Y; Xu Q; Sheng D
    PLoS One; 2021; 16(6):e0252203. PubMed ID: 34111128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Interfacial Tribofilms by Borate- and Polymer-Coated ZnO Nanoparticles Leading to Improved Wear Protection under a Boundary Lubrication Regime.
    Vyavhare K; Timmons RB; Erdemir A; Edwards BL; Aswath PB
    Langmuir; 2021 Feb; 37(5):1743-1759. PubMed ID: 33502870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanochemistry of Zinc Dialkyldithiophosphate on Steel Surfaces under Elastohydrodynamic Lubrication Conditions.
    Zhang J; Ewen JP; Ueda M; Wong JSS; Spikes HA
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6662-6676. PubMed ID: 31913008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tribological Properties of a Sliding Joint with an a-C:H:W Coating under Lubrication Conditions with PAO8 Oil and the Addition of 2% MoS
    Hadło K; Lubas J; Szczypinski-Sala W; Tomala A; Konieczny D
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive Pulsed Laser Deposition of Clustered-Type MoS
    Fominski V; Demin M; Nevolin V; Fominski D; Romanov R; Gritskevich M; Smirnov N
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32244608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atom Probe Tomography Unveils Formation Mechanisms of Wear-Protective Tribofilms by ZDDP, Ionic Liquid, and Their Combination.
    Guo W; Zhou Y; Sang X; Leonard DN; Qu J; Poplawsky JD
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23152-23163. PubMed ID: 28632986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Application of Nano-MoS
    Guo J; Peng R; Du H; Shen Y; Li Y; Li J; Dong G
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31979331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wear Mechanisms, Composition and Thickness of Antiwear Tribofilms Formed from Multi-Component Lubricants.
    Tsai AE; Komvopoulos K
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribocatalytic behaviour of a TiO
    Deshpande P; Minfray C; Dassenoy F; Le Mogne T; Jose D; Cobian M; Thiebaut B
    RSC Adv; 2018 Apr; 8(27):15056-15068. PubMed ID: 35541360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Industrial Gear Oils: Tribological Performance and Subsurface Changes.
    Adebogun A; Hudson R; Breakspear A; Warrens C; Gholinia A; Matthews A; Withers P
    Tribol Lett; 2018; 66(2):65. PubMed ID: 30996582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoVN-Cu Coatings for In Situ Tribocatalytic Formation of Carbon-Rich Tribofilms in Low-Viscosity Fuels.
    Jacques K; Shirani A; Smith J; Scharf TW; Walck SD; Berkebile S; Eryilmaz OL; Voevodin AA; Aouadi S; Berman D
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30070-30082. PubMed ID: 37315170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-based tribofilms from lubricating oils.
    Erdemir A; Ramirez G; Eryilmaz OL; Narayanan B; Liao Y; Kamath G; Sankaranarayanan SK
    Nature; 2016 Aug; 536(7614):67-71. PubMed ID: 27488799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribological Properties of Water-lubricated Rubber Materials after Modification by MoS
    Dong C; Yuan C; Wang L; Liu W; Bai X; Yan X
    Sci Rep; 2016 Oct; 6():35023. PubMed ID: 27713573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow Boundary Lubrication Friction by Three-Way Synergistic Interactions among Ionic Liquid, Friction Modifier, and Dispersant.
    Li W; Kumara C; Luo H; Meyer HM; He X; Ngo D; Kim SH; Qu J
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17077-17090. PubMed ID: 32189490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.